using namespace std;
int main(
int argc,
char**argv) {
Float tol = (argc > 1) ? atof(argv[1]) : 1e-15;
din >> catchmark(
"p") >>
p
>> catchmark("u") >> uh;
const geo& omega = uh.get_geo();
const space& Xh = uh.get_space();
integrate_option iopt;
iopt.set_order(2*Xh.degree());
Float err_linf = eh.max_abs();
dout <<
"err_linf = " << err_linf << endl
<< "err_lp = " << err_lp << endl
<< "err_w1p = " << err_w1p << endl;
return (err_linf < tol) ? 0 : 1;
}
see the Float page for the full documentation
see the field page for the full documentation
see the geo page for the full documentation
idiststream din(cin)
see the diststream page for the full documentation
odiststream dout(cout)
see the diststream page for the full documentation
see the space page for the full documentation
This file is part of Rheolef.
std::enable_if< details::has_field_rdof_interface< Expr >::value,details::field_expr_v2_nonlinear_terminal_field< typename Expr::scalar_type,typename Expr::memory_type,details::differentiate_option::gradient >>::type grad(const Expr &expr)
grad(uh): see the expression page for the full documentation
field_basic< T, M > lazy_interpolate(const space_basic< T, M > &X2h, const field_basic< T, M > &u1h)
see the interpolate page for the full documentation
T norm(const vec< T, M > &x)
norm(x): see the expression page for the full documentation
std::enable_if< details::is_field_expr_v2_nonlinear_arg< Expr >::value &&! is_undeterminated< Result >::value, Result >::type integrate(const geo_basic< T, M > &omega, const Expr &expr, const integrate_option &iopt, Result dummy=Result())
see the integrate page for the full documentation
space_mult_list< T, M > pow(const space_basic< T, M > &X, size_t n)
The p-Laplacian problem on a circular geometry – exact solution.
int main(int argc, char **argv)
rheolef - reference manual