Rheolef  7.2
an efficient C++ finite element environment
navier_stokes_upw_dg.icc
Go to the documentation of this file.
1 #include "inertia_upw.icc"
27  Float Re1, const geo& omega, string approx)
28  : navier_stokes_dg (Re1, omega, approx) {}
29 
32  trial u (Xh); test v (Xh);
33  form a = a0 + Re*( inertia (xh[0], u, v, iopt)
34  + inertia_upw (xh[0], u, v, iopt));
35  value_type mrh(2);
36  mrh[0] = a*xh[0] + b.trans_mult(xh[1]) - lh;
37  mrh[1] = b*xh[0] - c*xh[1] - kh;
38  return mrh;
39 }
41  trial du (Xh); test v (Xh);
42  a1 = a0 + Re*( inertia (xh[0], du, v, iopt)
43  + inertia_upw (xh[0], du, v, iopt)
44  + inertia (du, xh[0], v, iopt)
45  + d_inertia_upw (xh[0], du, xh[0], v, iopt));
46  stokes1 = problem_mixed (a1, b, c);
47  stokes1.set_metric (mp);
48 }
see the Float page for the full documentation
see the form page for the full documentation
see the geo page for the full documentation
see the problem_mixed page for the full documentation
see the test page for the full documentation
see the test page for the full documentation
point u(const point &x)
form inertia(W w, U u, V v, integrate_option iopt=integrate_option())
Definition: inertia.h:26
The inertia term of the Navier-Stokes equation with the discontinuous Galerkin method – upwinding var...
form d_inertia_upw(field w, trial dw, field u, test v, integrate_option iopt=integrate_option())
Definition: inertia_upw.icc:32
form inertia_upw(field w, trial u, test v, integrate_option iopt=integrate_option())
Definition: inertia_upw.icc:26
integrate_option iopt
problem_mixed stokes1
Eigen::Matrix< field, 2, 1 > value_type
navier_stokes_upw_dg(Float Re, const geo &omega, string approx)
value_type residue(const value_type &uh) const
void update_derivative(const value_type &uh) const
navier_stokes_dg::value_type value_type
Definition: leveque.h:25