
SHOGUN-tutorial

Sergey Lisitsyn Heiko Strathmann Chiyuan Zhang

March 5, 2013

2 of 53

Copyright c© 2012-2013 Shogun developers. Permission is granted to copy, distribute
and/or modify this document under the terms of the GNU Free Documentation License, Ver-
sion 1.3 or any later version published by the Free Software Foundation; with no Invariant
Sections, no Front-Cover Texts, and no Back-Cover Texts. A copy of the license is included in
the section entitled “GNU Free Documentation License”.

Contents

I Essentials 7

1 Learning 9
1.1 Learning is a search process . 9
1.2 Empirical risk minimization (ERM) principle . 9
1.3 Structural risk minimization (SRM) principle . 9
1.4 Linear models . 9
1.5 Supervised learning . 9

1.5.1 Classification . 9
1.5.2 Regression . 9

1.6 Unsupervised learning . 9
1.6.1 Clustering . 9
1.6.2 Dimensionality reduction . 9

1.7 Transfer learning . 9
1.7.1 Multitask learning . 9
1.7.2 Domain adaptation . 9

II Objects in SHOGUN 11

2 Kernels 13

3 Data Representations – Features 15
3.1 Dense Features . 15
3.2 Streaming Features . 15

III Algorithms 17

4 Multiclass learning 19
4.1 Natural Multiclass Algorithms . 19

4.1.1 K-Nearest Neighbors . 19
4.1.2 Naive Bayes . 20
4.1.3 Logistic Regression . 22

4.2 Reduction to Binary Problems . 22
4.2.1 One-vs-Rest and One-vs-One . 23
4.2.2 Error-Correcting Output Codes . 24

4.3 Tree-style Algorithms . 26

3

CONTENTS 4 of 53

5 Statistical Testing 27
5.1 Statistical Hypothesis Testing . 27
5.2 Two-Sample-Testing with the Maximum Mean Discrepancy 29

5.2.1 Quadratic Time MMD Statistic . 29
5.2.2 Linear Time MMD Statistic . 31
5.2.3 Precomputed Kernel Matrices for Quadratic Time MMD 33
5.2.4 Kernel Selection for MMD . 33

5.3 Independence Testing with the HSIC Statistic . 35
5.3.1 Estimate of HSIC . 38

6 Multitask learning 41
6.1 L1/Lq-norm regularized multitask learning . 41

6.1.1 Least squares linear regression . 41
6.1.2 Logistic regression . 42

6.2 Tree structured group lasso multitask learning . 42
6.2.1 Least squares linear regression . 42
6.2.2 Logistic regression . 42

6.3 Low rank approximations . 43
6.3.1 Least squares linear regression . 43
6.3.2 Logistic regression . 43

6.4 Clustered multitask learning . 43
6.4.1 Least squares linear regression . 44
6.4.2 Logistic regression . 44

A GNU Free Documentation License 45
1. APPLICABILITY AND DEFINITIONS . 45
2. VERBATIM COPYING . 47
3. COPYING IN QUANTITY . 47
4. MODIFICATIONS . 47
5. COMBINING DOCUMENTS . 49
6. COLLECTIONS OF DOCUMENTS . 49
7. AGGREGATION WITH INDEPENDENT WORKS 49
8. TRANSLATION . 50
9. TERMINATION . 50
10. FUTURE REVISIONS OF THIS LICENSE . 50
11. RELICENSING . 51
ADDENDUM: How to use this License for your documents 51

Todo list

Document features framework . 15
Document dense features . 15
Document streaming features. H.S. 15
How to organize and reference example code for tutorial? 23
Gamma Approximation: Merge with compute statistic in code and document! H.S. . . . 31

5

CONTENTS 6 of 53

Part I

Essentials

7

Chapter 1

Learning

In this part we outline essentials of machine learning.

1.1 Learning is a search process

1.2 Empirical risk minimization (ERM) principle

1.3 Structural risk minimization (SRM) principle

1.4 Linear models

1.5 Supervised learning

1.5.1 Classification

1.5.2 Regression

1.6 Unsupervised learning

1.6.1 Clustering

1.6.2 Dimensionality reduction

1.7 Transfer learning

1.7.1 Multitask learning

1.7.2 Domain adaptation

9

CHAPTER 1. LEARNING 10 of 53

Part II

Objects in SHOGUN

11

Chapter 2

Kernels

In this chapter, we describe how kernels are represented in SHOGUN and provide a list of
implemented ones.

13

CHAPTER 2. KERNELS 14 of 53

Chapter 3

Data Representations – Features

In this chapter, we describe how data or features are represented in SHOGUN and provide a
list of implemented ones. Document features

framework
Document features
framework

3.1 Dense Features

Document dense featuresDocument dense features

3.2 Streaming Features

Document streaming fea-
tures. H.S.
Document streaming fea-
tures. H.S.

15

CHAPTER 3. DATA REPRESENTATIONS – FEATURES 16 of 53

Part III

Algorithms

17

Chapter 4

Multiclass learning

In this chapter we describe multiclass learning algorithms available in the SHOGUN toolbox.
Multiclass learning refers to the problem with the output space Y = {1, . . . , K}1, where K > 2.
Most of real world machine learning classification problems are naturally multiclass. Typical
examples include document categorization, image classification, hand-written digit recogni-
tion, etc.

Generally, no assumption of any specific structure for the set Y are made in multiclass
learning. When priori knowledge are available for a rich structure of Y , structured-output
learning algorithms are usually used instead.

Many algorithms, like K-Nearest Neighbors and Naive Bayes, handle both multiclass prob-
lems and binary problems naturally (and in an uniform way). Those are described in sec-
tion 4.1. Section 4.2 describes reduction from multiclass problems into binary problems. Tree-
styled classifiers are described in section 4.3.

Several standard datasets are used by examples in this chapter. We summarize them in
Table 4.1. All of those datasets can be found in http://mldata.org.

4.1 Natural Multiclass Algorithms

4.1.1 K-Nearest Neighbors

K-Nearest Neighbors (KNN) is a very simple and effective algorithm. The learning step actually
does nothing but memorizing all the training points and the associated labels. The prediction
is carried out by finding the K nearest neighbors of the query point, and then voting. Here K
is a hyper-parameter for the algorithm. Smaller K gives the model low bias but high variance;
while larger K gives low variance but high bias.

KNN has attracted focus from both industrial and academia ever since its conception. It is
easy to implement, and can handle almost arbitrarily complex problem by adjusting one single
parameter K. Besides, it also has many nice theoretical properties [Devroye et al., 1996].

In SHOGUN, you can use CKNN to perform KNN learning. To construct a KNN machine,
you must choose the hyper-parameter K and a distance function. Usually, we simply use the
CEuclideanDistance, but in general, any subclass of CDistance can be used. For demonstra-
tion, we select a random subset of 1000 samples from USPS, and run 2-fold cross validation of

1Note while we describe the class numbers as from 1 to K, the multiclass machines in SHOGUN expect the examples
to be labeled with 0, . . . , K− 1.

19

http://mldata.org
http://www.shogun-toolbox.org/doc/en/latest/classshogun_1_1CKNN.html
http://www.shogun-toolbox.org/doc/en/latest/classshogun_1_1CEuclideanDistance.html
http://www.shogun-toolbox.org/doc/en/latest/classshogun_1_1CDistance.html

CHAPTER 4. MULTICLASS LEARNING 20 of 53

Name # Classes # Samples # Attributes Remarks

USPS 10 9298 256 Hand-written Digits

Table 4.1: Standard datasets for multiclass learning used in examples.

0 5 10 15 20
K

0.82
0.84
0.86
0.88
0.90
0.92
0.94
0.96
0.98
1.00

A
cc

ur
ac

y

Test Accuracy
Training Accuracy

(a) KNN classification accuracy on USPS.

0 5 10 15 20
K

0.0006

0.0007

0.0008

0.0009

0.0010

0.0011

0.0012

0.0013

ti
m

e

Plain KNN
CoverTree KNN

(b) Prediction time (per example) with and with-
out CoverTree.

Figure 4.1: KNN classification on a random subset (1000 samples) of USPS.

KNN on it with varying K. The accuracy is shown in Fig. 4.1a.
In SHOGUN, you can also use Cover Tree [Beygelzimer et al., 2006] to speed up the nearest

neighbor searching process in KNN. Just call set_use_covertree on the KNN machine to
enable or disable this feature. The prediction time comparison for this experiment with and
without Cover Tree are shown in Fig. 4.1b.

Although simple and elegant, KNN is generally very resource costly. Because all the train-
ing samples are to be memorized literally, the memory cost of KNN “learning” becomes pro-
hibitive when the dataset is huge. Even though the memory is big enough to hold all the data,
the prediction will be slow, since the distances between the query point and all the training
points need to be computed and ranked. The situation becomes worse if in addition the data
samples are all very high-dimensional.

4.1.2 Naive Bayes

Naive Bayes is a simple and fast algorithm for multiclass learning. Formally, it predict the class
by computing the posterior probability of each class k after observing the input x:

P (Y = k|X = x) =
P(X = x|Y = k)P(Y = k)

P(X = x)

The prediction is then made by

y = arg max
k∈{1,...,K}

P(Y = k|X = x)

Since P(X = x) is a constant factor for all P(Y = k|X = x), k = 1, . . . , K, there is no need to
compute it.

CHAPTER 4. MULTICLASS LEARNING 21 of 53

Figure 4.2: Gaussian Naive Bayes fails to learn on a simple 2D example with 3 linearly separa-
ble classes.

In SHOGUN, CGaussianNaiveBayes implements the Naive Bayes algorithm. It is prefixed
with “Gaussian” because the probability model for P(X = x|Y = k) for each k is taken to be
a multi-variate Gaussian distribution. Furthermore, each dimension of the feature vector X
is assumed to be independent. The “Naive” independence assumption enables us the learn
the model by estimating the parameters for each feature dimension independently, thus the
whole learning algorithm runs very quickly. And this is also the reason for its name. However,
this assumption can be very restrictive. In Fig. 4.2, we show a simple 2D example. There are
3 linearly separable classes. The scattered points are training samples with colors indicating
their labels. The filled area indicate the hypothesis learned by the CGaussianNaiveBayes.
The training samples are actually generated from three Gaussian distributions. But since the
covariance for those Gaussian distributions are not diagonal (i.e. there are “rotations”), the
GNB algorithm cannot handle them properly.

Although the independent assumption is usually considered to be too optimistic in reality,
Naive Bayes sometimes works very well in some applications. For example, in email spam
filtering, Naive Bayes2 is a very popular and widely used method.

This algorithm is closely related to the Gaussian Mixture Model (GMM) learning algorithm.
However, while GMM is an unsupervised learning algorithm, Gaussian Naive Bayes is super-
vised learning. It uses the training labels to directly estimate the Gaussian parameters for each
class, thus avoids the iterative Expectation Maximization procedures in GMM.

The merit of GNB is that both training and predicting are very fast, and it has no hyper-
parameters.

2More specifically, the discrete Naive Bayes is generally used in this scenario. The main difference with Gaussian
Naive Bayes is that a tabular instead of a parametric Gaussian distribution is used to describe the likelihood P(X =
x|K = k).

http://www.shogun-toolbox.org/doc/en/latest/classshogun_1_1CGaussianNaiveBayes.html
http://www.shogun-toolbox.org/doc/en/latest/classshogun_1_1CGaussianNaiveBayes.html

CHAPTER 4. MULTICLASS LEARNING 22 of 53

4.1.3 Logistic Regression

Although named logistic regression, it is actually a classification algorithm. Similar to Naive
Bayes, logistic regression computes the posterior P(Y = k|X = x) and makes prediction by

y = arg max
k∈{1,...,K}

P(Y = k|X = x)

However, Naive Bayes is a generative model, in which the distribution of the input variable
X is also modeled (by a Gaussian distribution in this case). But logistic regression is a discrimi-
native model, which doesn’t care about the distribution of X, and models the posterior directly.
Actually, the two algorithms are a generative-discriminative pair [Ng et al., 2001].

To be specific, logistic regression uses linear functions in X to model the posterior probabil-
ities:

log
P(Y = 1|X = x)
P(Y = K|X = x)

= β10 + βT
1 x (4.1)

log
P(Y = 2|X = x)
P(Y = K|X = x)

= β20 + βT
2 x (4.2)

...

log
P(Y = K− 1|X = x)

P(Y = K|X = x)
= β(K−1)0 + βT

K−1x (4.3)

The training of a logistic regression model is carried out via maximum likelihood estimation
of the parameters β = {β10, βT

1 , . . . , β(K−1)0, βT
K−1}. There is no closed form solution for the

estimated parameters.
There is not independent implementation of logistic regression in SHOGUN, but the

CLibLinear becomes a logistic regression model when constructed with the argument L2R_LR.
This model also include a regularization term of the `2-norm of β. If sparsity in β is needed,
one can also use L1R_LR, which replaces the `2-norm regularizer with a `1-norm regularizer.

Unfortunately, the logistic regression in SHOGUN does not support multiclass problem yet.

4.2 Reduction to Binary Problems

Since binary classification problems are one of the most thoroughly studied problems in ma-
chine learning, it is very appealing to consider reducing multiclass problems to binary ones.
Then many advanced learning and optimization techniques as well as generalization bound
analysis for binary classification can be utilized.

In SHOGUN, the strategies of reducing a multiclass problem to binary classification prob-
lems are described by an instance of CMulticlassStrategy. A multiclass strategy describes

1. How to train the multiclass machine as a number of binary machines?

• How many binary machines are needed?

• For each binary machine, what subset of the training samples are used, and how
are they colored3?

3In multiclass problems, we use coloring to refer partitioning the classes into two groups: +1 and −1, or black and
white, or any other meaningful names.

http://www.shogun-toolbox.org/doc/en/latest/classshogun_1_1CLibLinear.html
http://www.shogun-toolbox.org/doc/en/latest/classshogun_1_1CMulticlassStrategy.html

CHAPTER 4. MULTICLASS LEARNING 23 of 53

Strategy Training Time Test Time Accuracy

One-vs-Rest 1.72 2.25 92.05%
One-vs-One 2.14 4.45 93.75%

Table 4.2: Comparison of One-vs-Rest and One-vs-One multiclass reduction strategy on the
USPS dataset.

2. How to combine the prediction results of binary machines into the final multiclass pre-
diction?

The user can derive from the virtual class CMulticlassStrategy to implement a cus-
tomized multiclass strategy. But usually the built-in strategies are enough for general prob-
lems. We will describe the built-in One-vs-Rest, One-vs-One and Error-Correcting Output Codes
strategies in the following subsections.

The basic routine to use a multiclass machine with reduction to binary problems in shogun
is to create a generic multiclass machine and then assign a particular multiclass strategy and a
base binary machine.

4.2.1 One-vs-Rest and One-vs-One

The One-vs-Rest strategy is implemented in CMulticlassOneVsRestStrategy. As indicated
by the name, this strategy reduce a K-class problem to K binary sub-problems. For the k-th
problem, where k ∈ {1, . . . , K}, the samples from class k are colored as +1, and the samples
from other classes are colored as −1. The multiclass prediction is given as

f (x) = arg max
k∈{1,...,K}

fk(x)

where fk(x) is the prediction of the k-th binary machines.
The One-vs-Rest strategy is easy to implement yet produces the good performance in many

cases. One interesting paper [Rifkin and Klautau, 2004] shows that the One-vs-Rest strategy
can be

as accurate as any other approach, assuming that the underlying binary classifiers are well-
tuned regularized classifiers such as support vector machines.

Implemented in CMulticlassOneVsOneStrategy, the One-vs-One strategy [Hastie and Tib-
shirani, 1997] is another simple and intuitive strategy: it basically produces one binary problem
for each pair of classes. So there will be (K

2) binary problems. At prediction time, the output of
every binary classifiers are collected to do voting for the K classes. The class with the highest
vote becomes the final prediction.

Compared with the One-vs-Rest strategy, the One-vs-One strategy is usually more costly
to train and evaluate because more binary machines are used.

In the following, we demonstrate how to use SHOGUN’s One-vs-Rest and One-vs-One mul-
ticlass learning strategy on the USPS dataset. For demonstration, we randomly 200 samples
from each class for training and 200 samples from each class for testing.

How to organize and reference example code for tutorial?

http://www.shogun-toolbox.org/doc/en/latest/classshogun_1_1CMulticlassStrategy.html
http://www.shogun-toolbox.org/doc/en/latest/classshogun_1_1CMulticlassOneVsRestStrategy.html
http://www.shogun-toolbox.org/doc/en/latest/classshogun_1_1CMulticlassOneVsOneStrategy.html

CHAPTER 4. MULTICLASS LEARNING 24 of 53

The CLibLinear is used as the base binary classifier in a CLinearMulticlassMachine, with
One-vs-Rest and One-vs-One strategies. The running time and performance is reported in
Table 4.2.

4.2.2 Error-Correcting Output Codes

Error-Correcting Output Codes (ECOC) [Dietterich and Bakiri, 1995; Allwein et al., 2000] is a
generalization of the One-vs-Rest and One-vs-One strategies. For example, we can represent
the One-vs-Rest strategy with the following K× K coding matrix, or a codebook:

+1 −1 −1 . . . −1 −1
−1 +1 −1 . . . −1 −1
−1 −1 +1 . . . −1 −1

...
...

...
. . .

...
...

−1 −1 −1 . . . +1 −1
−1 −1 −1 . . . −1 +1


Denote the codebook by B, there is one column of the codebook associated with each of the

K classes. For example, the code for class 1 is [+1,−1,−1, . . . ,−1]. Each row of the codebook
corresponds to a binary coloring of all the K classes. For example, in the first row, the class
1 is colored as +1, while the rest of the classes are all colored as −1. Associated with each
row, there is a binary classifier trained according to the coloring. For example, the binary
classifier associated with the first row is trained by treating all the examples of class 1 as
positive examples, and all the examples of the rest of the classes as negative examples.

In this special case, there are K rows in the codebook. The number of rows in the codebook
is usually called the code length. As we can see, this codebook exactly describes how the One-
vs-Rest strategy trains the binary sub-machines.

A further generalization is to allow 0-values in the codebook. A 0 for a class k in a row
means we ignore (the examples of) class k when training the binary classifiers associated with
this row. With this generalization, we can also easily describes the One-vs-One strategy with a
(K

2)× K codebook: 

+1 −1 0 . . . 0 0
+1 0 −1 . . . 0 0

...
...

...
. . .

... 0
+1 0 0 . . . −1 0
0 +1 −1 . . . 0 0
...

...
...

...
...

0 0 0 . . . +1 −1


Here each of the (K

2) rows describes a binary classifier trained with a pair of classes. The
resultant binary classifiers will be identical as those described by a One-vs-One strategy.

Since 0 is allowed in the codebook to ignore some classes, this kind of codebooks are
usually called sparse codebooks, while the codebooks with only +1 and −1 are usually called
dense codebook.

In general case, we can specify any code length and fill the codebook arbitrarily. However,
some rules should be followed:

http://www.shogun-toolbox.org/doc/en/latest/classshogun_1_1CLibLinear.html
http://www.shogun-toolbox.org/doc/en/latest/classshogun_1_1CLinearMulticlassMachine.html

CHAPTER 4. MULTICLASS LEARNING 25 of 53

1. Each row must describe a valid binary coloring. In other words, both +1 and −1 should
appear at least once in each row. Or else a binary classifier cannot be obtained for this
row.

2. It is good to avoid duplicated rows. There is generally no harm to have duplicated rows,
but the resultant binary classifiers are completely identical provided the training algo-
rithm for the binary classifiers are deterministic. So this can be a waste of computational
resource.

3. Negative rows are also duplicated. Simply inversing the sign of a code row does not
produce a “new” code row. Because the resultant binary classifier will simply be the
negative classifier associated with the original row.

Though you can certainly generate your own codebook, it is usually easier to use the
SHOGUN built-in procedures to generate codebook automatically. There are various codebook
generators (called encoders) in SHOGUN. However, before describing those encoders in details,
let us notice that a codebook only describes how the sub-machines are trained. But we still
need a way to specify how the binary classification results of the sub-machines can be com-
bined to get a multiclass classification result.

Review the codebook again: corresponding to each class, there is a column. We call the
codebook column the (binary) code for that class. For a new sample x, by applying the binary
classifiers associated with each row successively, we get a prediction vector of the same length
as the codes. Deciding the multiclass label from the prediction vector (called decoding) can be
done by minimizing the distance between the codes and the prediction vector. Different decoders
define different choices of distance functions. For this reason, it is usually good to make the
mutual distance between codes of different classes large. In this way, even though several
binary classifiers make wrong predictions, the distance of the resultant prediction vector to the
code of the true class is likely to be still smaller than the distance to other classes. So correct
results can still be obtained even when some of the binary classifiers make mistakes. This is
the reason for the name Error-Correcting Output Codes.

In SHOGUN, encoding schemes are described by subclasses of CECOCEncoder, while decod-
ing schemes are described by subclasses of CECOCDecoder. Theoretically, any combinations of
encoder-decoder pairs can be used. Here we will introduce several common encoder/decoders
in shogun.

• CECOCRandomDenseEncoder: This encoder generate random dense (+1/−1) codebooks
and choose the one with the largest minimum mutual distance among the classes. The
recommended code length for this encoder is 10 log K [Allwein et al., 2000].

• CECOCRandomSparseEncoder: This is similar to the random dense encoder, except that
sparse (+1/−1/0) codebooks are generated. The recommended code length for this
encoder is 15 log K [Escalera et al., 2009].

• CECOCOVREncoder, CECOCOVOEncoder: These two encoders mimic the One-vs-Rest and
One-vs-One strategies respectively. They are implemented mainly for demonstrative
purpose. When suitable decoders are used, the results will be equivalent to the corre-
sponding strategies, respectively.

• CECOCDiscriminantEncoder

• CECOCForestEncoder

Describe the name ECOC here, and describe the SHOGUN ECOC encoding/decoding pairs.

http://www.shogun-toolbox.org/doc/en/latest/classshogun_1_1CECOCEncoder.html
http://www.shogun-toolbox.org/doc/en/latest/classshogun_1_1CECOCDecoder.html
http://www.shogun-toolbox.org/doc/en/latest/classshogun_1_1CECOCRandomDenseEncoder.html
http://www.shogun-toolbox.org/doc/en/latest/classshogun_1_1CECOCRandomSparseEncoder.html
http://www.shogun-toolbox.org/doc/en/latest/classshogun_1_1CECOCOVREncoder.html
http://www.shogun-toolbox.org/doc/en/latest/classshogun_1_1CECOCOVOEncoder.html
http://www.shogun-toolbox.org/doc/en/latest/classshogun_1_1CECOCDiscriminantEncoder.html
http://www.shogun-toolbox.org/doc/en/latest/classshogun_1_1CECOCForestEncoder.html

CHAPTER 4. MULTICLASS LEARNING 26 of 53

4.3 Tree-style Algorithms

Chapter 5

Statistical Testing

This chapter describes SHOGUN’s framework for statistical hypothesis testing. We begin by
giving a brief outline of the problem setting in section 5.1. Then, we describe methods for
two-sample testing for independence testing.

Methods for two-sample testing currently consist of tests based on the Maximum Mean
Discrepancy, section 5.2. There are two types of tests available, a quadratic time test, which is
described in section 5.2.1; and a linear time test, which is described in section 5.2.2. Both come
in various flavours.

Independence testing is currently based in the Hilbert Schmidt Independence Criterion, which
is described in section 5.3 along with a test using it.

5.1 Statistical Hypothesis Testing

To set the context, we here briefly describe statistical hypothesis testing. Informally, one de-
fines a hypothesis on a certain domain and then uses a statistical test to check whether this
hypothesis is true. Formally, the goal is to reject a so-called null-hypothesis H0, which is the
complement of an alternative-hypothesis HA.

To distinguish the hypothesises, a test statistic is computed on sample data. Since sample
data is finite, this corresponds to sampling the true distribution of the test statistic. There are
two different distributions of the test statistic – one for each hypothesis. The null-distribution
corresponds to test statistic samples under the model that H0 holds; the alternative-distribution
corresponds to test statistic samples under the model that HA holds.

In practice, one tries to compute the quantile of the test statistic in the null-distribution.
In case the test statistic is in a high quantile, i.e. it is unlikely that the null-distribution has
generated the test statistic – the null-hypothesis H0 is rejected.

There are two different kinds of errors in hypothesis testing:

• A type I error is made when H0 : p = q is wrongly rejected. That is, the tests says that the
samples are from different distributions when they are not.

• A type II error is made when HA : p = q is wrongly accepted. That is, the tests says that
the samples are from same distributions when they are from the same.

A so called consistent test achieves zero type II error for a fixed type I error.
To decide whether to reject H0, one could set a threshold, say at the 95% quantile of the

null-distribution, and reject H0 when the test statistic lies below that threshold. This means

27

CHAPTER 5. STATISTICAL TESTING 28 of 53

that the chance that the samples were generated under H0 are 5%. We call this number the test
power α (in this case α = 0.05). It is an upper bound on the probability for a type I error. An
alternative way is simply to compute the quantile of the test statistic in the null-distribution,
the so-called p-value, and to compare the p-value against a desired test power, say α = 0.05, by
hand. The advantage of the second method is that one not only gets a binary answer, but also
an upper bound on the type I error.

In order to construct a two-sample test, the null-distribution of the test statistic has to be
approximated. One way of doing this for any two-sample test is called bootstrapping:

Algorithm 5.1 Bootstrapping a null-distribution.
Inputs are:

• X, Y, sets of samples from p, q of size m, n respectively

Output is:

• One sample from null-distribution. Simply repeat for more samples.

1: Z ← {X, Y}
2: Ẑ = {ẑ1, ..., ẑm+n} ← randperm(Z) (generate a random ordering)
3: X̂ ← {ẑ1, ...ẑm}
4: Ŷ ← {ẑm+1, ...ẑm+n}
5: return Test statistic for X̂, Ŷ

Bootstrapping is a useful technique to create ground-truth samples from a null-distribution.
However, it is rather costly because the statistic has to be re-computed for every sample. More
details will be given when individual tests are described.

Interface for Statistical Testing

SHOGUN implements statistical testing in the abstract class CTestStatistic.

• Test statistics can be computed with compute_statistic.

• P-values for a given statistic can be computed via compute_p_value. Results depend on
method that is set for approximating null-distribution.

• Statistic thresholds for a given p-value can be computed via compute_threshold. Results
depend on method that is set for approximating null-distribution.

• A number of samples can be drawn from the null-distribution using bootstrapping via
bootstrap_null. This will call compute_statistic a certain number of times while
underlying data is modified in such way that the null hypothesis H0 : p = q is true.

• A complete two-sample test can be computed using perform_test. There are two differ-
ent versions of this method:

– One without parameters which computes the statistic and returns a p-value for it.
This p-value can be used to (not) reject the null hypothesis.

– One which has a test level α as a parameter and returns true if the null hypothesis
is rejected and false otherwise. Obviously, this method is just a simple wrapper of
the above one.

http://www.shogun-toolbox.org/doc/en/latest/classshogun_1_1CTestStatistic.html

CHAPTER 5. STATISTICAL TESTING 29 of 53

The perform_test methods are convenience wrappers for compute_statistic and
compute_p_value. However, in certain cases, it might be possible to compute statistic and
p-value in the same loop which is more efficient. In subclasses of CTestStatistic, the first
one might be overwritten in order to implement this – if possible. See class documentations for
availability. If an efficient implementation is not existent, perform_test simply is a wrapper
for compute_statistic and compute_p_value.

5.2 Two-Sample-Testing with the Maximum Mean Discrep-
ancy

An important class of hypothesis tests are the two-sample tests, which will be defined in
the following. In two-sample testing, one tries to find out whether to sets of samples
come from different distributions. Given two probability distributions p, q and i.i.d. samples
X = {xi}m

i=1 ⊆ Rd ∼ p and Y = {yi}n
i=1 ⊆ Rd ∼ p, the two sample test distinguishes the

hypothesises

H0 : p = q
HA : p 6= q

In order to solve this problem, it is desirable to have a criterion than takes a positive unique
value if p 6= q, and zero if and only if p = q. The so called Maximum Mean Discrepancy (MMD),
has this property and allows to distinguish any two probability distributions, if used in a
reproducing kernel Hilbert space (RKHS). It is the distance of the mean embeddings µp, µq of the
distributions p, q in such a RKHS F – which can also be expressed in terms of expectation of
kernel functions, i.e.

MMD[F , p, q] = ||µp − µq||2F (5.1)

= Ex,x′
[
k(x, x′)

]
− 2Ex,y [k(x, y)] + Ey,y′

[
k(y, y′)

]
See [Gretton et al., 2012a, Section 2] for details. We here only describe how to use the MMD
for two-sample testing. SHOGUN offers two types of test statistic based on the MMD, one
with quadratic costs both in time and space, and on with linear time and constant space
costs. Both come in different versions and with different methods how to approximate the
null-distribution in order to construct a two-sample test.

5.2.1 Quadratic Time MMD Statistic

We now describe the quadratic time MMD, as described in [Gretton et al., 2012a, Lemma
6], which is implemented in SHOGUN. All methods in this section are implemented in
CQuadraticTimeMMD, which accepts any type of SHOGUN features.

An unbiased estimate for expression 5.1 can be obtained by estimating expected values
with sample means

MMD2
u[F , X, Y] =

1
m(m− 1)

m

∑
i=1

m

∑
j 6=i

k(xi, xj) +
1

n(n− 1)

n

∑
i=1

n

∑
j 6=i

k(yi, yj)

− 2
mn

m

∑
i=1

n

∑
j 6=i

k(xi, yj)

http://www.shogun-toolbox.org/doc/en/latest/classshogun_1_1CTestStatistic.html
http://www.shogun-toolbox.org/doc/en/latest/classshogun_1_1CQuadraticTimeMMD.html

CHAPTER 5. STATISTICAL TESTING 30 of 53

A biased estimate would be

MMD2
b[F , X, Y] =

1
m2

m

∑
i=1

m

∑
j=1

k(xi, xj) +
1
n2

n

∑
i=1

n

∑
j=1

k(yi, yj)

− 2
mn

m

∑
i=1

n

∑
j 6=i

k(xi, yj)

To compute statistic, use compute_statistic. To decide which statistic to use, use
set_statistic_type with arguments BIASED or UNBIASED to activate this statistic type. Note
that some methods for approximating the null-distribution only work with one of both types.
Both statistics’ computational costs are quadratic both in time and space. Note that the method
returns m MMD2

b[F , X, Y] since null distribution approximations work on m times null distri-
bution.

Bootstrapping

As for any two-sample test in SHOGUN, bootstrapping can be used to approximate the
null-distribution with both types of quadratic MMD statistic. This results in a consis-
tent, but slow test. Note that for each sample, the quadratic time estimate has to be re-
computed. The number of samples to take is the only parameter. If unsure what to
do, bootstrapping is the recommended way of constructing a test. As a rule of thumb,
use at least 250 samples. See bootstrap_null in CTwoDistributionsTestStatistic and
CKernelTwoSampleTestStatistic. Strongly consider using pre-computed kernel matrices as
described in section 5.2.3.

Spectrum Approximation

Approximates the null-distribution using the Eigen-Spectrum of the kernel matrix of the joint
samples. Was described in [Gretton et al., 2012b]. This is a fast and consistent test. Effectively,
the null-distribution of the biased statistic is sampled, but in a more efficient way than the
bootstrapping approach. The converges as

m MMD2
b →

∞

∑
l=1

λlz2
l (5.2)

where zl ∼ N (0, 2) are i.i.d. normal samples and λl Eigenvalues of expression 2 in [Gretton
et al., 2012b], which can be empirically estimated by λ̂l =

1
m νl where νl are the Eigenvalues of

the centred kernel matrix of the joint samples X and Y. The distribution in expression 5.2 can
be easily sampled. SHOGUN’s implementation has two parameters:

• Number of samples from null-distribution. The more, the more accurate. As a rule of
thumb, use 250.

• Number of Eigenvalues of the Eigen-decomposition of the kernel matrix to use. The
more, the better the results get; however, the Eigen-spectrum of the joint gram matrix
usually decreases very fast. See [Gretton et al., 2012b] for details.

If the kernel matrices are diagonal dominant, this method is likely to fail. For that and more
details, see the original paper. Computational costs are much lower than bootstrapping, which

http://www.shogun-toolbox.org/doc/en/latest/classshogun_1_1CTwoDistributionsTestStatistic.html
http://www.shogun-toolbox.org/doc/en/latest/classshogun_1_1CKernelTwoSampleTestStatistic.html

CHAPTER 5. STATISTICAL TESTING 31 of 53

is the only consistent alternative. Since Eigenvalues of the gram matrix has to be computed,
costs are in O(m3).

To get a number of samples, use sample_null_spectrum; to use that method for test-
ing, use set_null_approximation_method(MMD2_SPECTRUM). Both methods are to be found
in CQuadraticTimeMMD. Important: This method only works with the biased statistic.

Gamma Approximation

Another method for approximating the null-distribution is by matching the first two moments Gamma Approximation:
Merge with compute
statistic in code and doc-
ument! H.S.

Gamma Approximation:
Merge with compute
statistic in code and doc-
ument! H.S.

of a gamma-distribution and then use that. This is not consistent, but usually also gives
good results while being very fast. However, there are distributions where the method fails;
therefore, the type I error should always be monitored. Described in [Gretton et al., 2012b]. It
uses

m MMDb(Z) ∼
xα−1 exp(− x

β)

βαΓ(α)
(5.3)

where

α =
(E(MMDb(Z)))2

var(MMDb(Z))
and β =

m var(MMDb(Z))
(E(MMDb(Z)))2

Then, any threshold and p-value can be computed using the gamma distribution in expres-
sion 5.3. Computational costs are in O(m2).

To use that method for testing, use set_null_approximation_method(MMD2_GAMMA), to be
found in CQuadraticTimeMMD. Important: This method only works with the biased statistic.

5.2.2 Linear Time MMD Statistic

We now describe the linear time MMD, as described in [Gretton et al., 2012a, Section 6], which
is implemented in SHOGUN. All methods in this section are implemented in CLinearTimeMMD.

A fast, unbiased estimate for expression 5.1 which still uses all available data can be ob-
tained by dividing data into two parts and then compute

MMD2
l [F , X, Y] =

1
m2

m2

∑
i=1

k(x2i, x2i+1) + k(y2i, y2i+1)− k(x2i, y2i+1)− k(x2i+1, y2i)

where m2 = bm
2 c. While the above expression assumes that m data are available from each

distribution, the statistic in general works in an online setting where features are obtained one
by one. Since only pairs of four points are considered at once, this allows to compute it on
data streams. In addition, the computational costs are linear in the number of samples that
are considered from each distribution. These two properties make the linear time MMD very
applicable for large scale two-sample tests. In theory, any number of samples can be processed
– time is the only limiting factor.

How to Pass Data to CLinearTimeMMD

To account for this streaming nature of the linear time MMD, the implementation in SHOGUN
is based on the streaming framework around the class CStreamingFeatures. The latter basi-
cally implements an interface to get data one by one or in larger blocks. See section 3.2 for

http://www.shogun-toolbox.org/doc/en/latest/classshogun_1_1CQuadraticTimeMMD.html
http://www.shogun-toolbox.org/doc/en/latest/classshogun_1_1CQuadraticTimeMMD.html
http://www.shogun-toolbox.org/doc/en/latest/classshogun_1_1CLinearTimeMMD.html
http://www.shogun-toolbox.org/doc/en/latest/classshogun_1_1CLinearTimeMMD.html
http://www.shogun-toolbox.org/doc/en/latest/classshogun_1_1CStreamingFeatures.html

CHAPTER 5. STATISTICAL TESTING 32 of 53

more details on the streaming interface. If CLinearTimeMMD should be used on non-streaming
data, such as for example CDenseFeatures as described in section 3.1, simply construct an
instance of CStreamingFeatures from these. For example, CStreamingDenseFeatures offers
a constructor to construct an instance from an object of type CDenseFeatures which then can
be passed to CLinearTimeMMD. If a streaming feature class for your desired data does not exist
or does not offer an constructor to build from an object in memory, write to the mailing list.
Important: The underlying parser of CDenseFeatures has to be started (or ensured that it is
not needed) before CLinearTimeMMD computes anything. Otherwise, a deadlock might occur.

After streaming data is passed to CLinearTimeMMD, all interfaces work as before – with the
difference that new data is taken from the stream in every call of compute_statistic and
related methods. Note that taking data from the stream one by one results in a very inefficient
way of computing the statistic due to involved overhead in the framework. To avoid this, there
is an optional constructor parameter to specify a blocksize (note there is a default value). This
number specifies how many samples are taken from the stream at once. The statistic then is
computed in bursts on these blocks. In principle, the blocksize should be as large as possible,
however, the memory consumption increases linear in the number of samples per block. If set
larger than m, all samples will be processed at once.

Bootstrapping

As for any two-sample test in SHOGUN, bootstrapping can be used to approximate the null
distribution. This results in a consistent, but slow test. The number of samples to take is
the only parameter. As a rule of thumb, use at least 250 samples. See bootstrap_null in
CLinearTimeMMD. Note that since CLinearTimeMMD operates on streaming features, new data is
taken from the stream in every iteration. This is in contrast to the usual way of bootstrapping
as described in algorithm 5.1, where data is permuted in every iteration.

Also note that in general, bootstrapping is not really necessary since with the Gaussian
approximation, a fast and consistent estimate of the null-distribution is available for the linear
time MMD. However, to ensure that the Gaussian approximation is accurate, it should always
be checked against bootstrapping at least once.

Gaussian Approximation

Since both the null- and the alternative distribution are Gaussian with equal variance (and dif-
ferent mean), it is possible to approximate the null-distribution by using a linear time estimate
for this variance. An unbiased, linear time estimator for

var[MMD2
l [F , X, Y]]

can simply be computed by computing the empirical variance of

k(x2i, x2i+1) + k(y2i, y2i+1)− k(x2i, y2i+1)− k(x2i+1, y2i) (1 ≤ i ≤ m2)

A normal distribution with this variance and zero mean can then be used as an approximation
for the null-distribution. This results in a consistent test and is very fast. However, note that
it is an approximation and its accuracy depends on the underlying data distributions. It is a
good idea to compare to the bootstrapping approach first to determine an appropriate number
of samples to use. This number is usually in the tens of thousands.

To use the method for testing, use set_null_approximation_method(MMD1_GAUSSIAN),
to be found in CLinearTimeMMD. Using the Gaussian approximation, the null distri-
bution can be estimated on the fly while computing the test statistic. The method

http://www.shogun-toolbox.org/doc/en/latest/classshogun_1_1CLinearTimeMMD.html
http://www.shogun-toolbox.org/doc/en/latest/classshogun_1_1CDenseFeatures.html
http://www.shogun-toolbox.org/doc/en/latest/classshogun_1_1CStreamingFeatures.html
http://www.shogun-toolbox.org/doc/en/latest/classshogun_1_1CStreamingDenseFeatures.html
http://www.shogun-toolbox.org/doc/en/latest/classshogun_1_1CDenseFeatures.html
http://www.shogun-toolbox.org/doc/en/latest/classshogun_1_1CLinearTimeMMD.html
http://www.shogun-toolbox.org/doc/en/latest/classshogun_1_1CDenseFeatures.html
http://www.shogun-toolbox.org/doc/en/latest/classshogun_1_1CLinearTimeMMD.html
http://www.shogun-toolbox.org/doc/en/latest/classshogun_1_1CLinearTimeMMD.html
http://www.shogun-toolbox.org/doc/en/latest/classshogun_1_1CLinearTimeMMD.html
http://www.shogun-toolbox.org/doc/en/latest/classshogun_1_1CLinearTimeMMD.html
http://www.shogun-toolbox.org/doc/en/latest/classshogun_1_1CLinearTimeMMD.html

CHAPTER 5. STATISTICAL TESTING 33 of 53

compute_statistic_and_variance does exactly this (results written into parameter refer-
ences). The perform_test methods of CTestStatistic for performing a complete two-sample
are overwritten to make use of this more efficient approach. Use these instead of computing
statistic and p-value separately.

5.2.3 Precomputed Kernel Matrices for Quadratic Time MMD

For all MMD-based two-sample-tests, elements of kernel matrices of sample data have to be
used. By default, all computations are done in-place when possible, which means that the un-
derlying kernel is evaluated on the fly (There are exceptions, when the matrix has to be stored,
for example in order so solve Eigenvalue problems). However, for the quadratic time MMD,
this may be inefficient when statistics are computed multiple times – as in bootstrapping.
Therefore, it is possible to initialize CQuadraticTimeMMD with a pre-computed CCusotmKernel.
This kernel may be computed from any other kernel by simply passing the latter to the con-
structor of CCusotmKernel. This should be done whenever the kernel matrix fits into memory;
it greatly improves performance. In bootstrapping, the kernel matrix only has to be permuted
instead of being re-computed in every iteration. But there is also a (small) advantage for all
other methods since SHOGUN computes kernel matrices in multiple threads.

In contrast, CLinearTimeMMD should not be used with CCusotmKernels since it does not
even need all elements – so pointless computations would be made. Also, CLinearTimeMMD
might be c

5.2.4 Kernel Selection for MMD

SHOGUN’s kernel selection methods for MMD based two-sample tests are all based around
Sriperumbudur et al. [2009]; Gretton et al. [2012c]. For the CLinearTimeMMD, Gretton et al.
[2012c] describes a way of selecting the optimal kernel in the sense that the test’s type II error is
minimised. For the linear time MMD, this is the method of choice. It is done via maximising
the MMD statistic divided by its standard deviation and it is possible for single kernels and
also for convex combinations of them. For the CQuadraticTimeMMD, the best method in liter-
ature is choosing the kernel that maximised the MMD statistic. For convex combinations of
kernels, this can be achieved via a L2 norm constraint. A detailed comparison of all methods
on numerous datasets can be found in Strathmann [2012].

MMD Kernel selection on SHOGUN always involves an implementation of the base class
CMMDKernelSelection, which defines the interface for kernel selection. If combinations of
kernel should be considered, there is a sub-class CMMDKernelSelectionComb. In addition, it
involves setting up a number of baseline kernels K to choose from/combine in the form of a
CCombinedKernel. All methods compute their results for a fixed set of these baseline kernels.
We later give an example how to use these classes after providing a list of available methods.

CMMDKernelSelectionMedian: Selects from a set CGaussianKernel instances the one whose
width parameter is closest to the median of the pairwise distances in the data. The median
is computed on a certain number of points from each distribution that can be specified as a
parameter. Since the median is a stable statistic, one does not have to compute all pairwise
distances but rather just a few thousands. This method a useful (and fast) heuristic that in
many cases gives a good hint on where to start looking for Gaussian kernel widths. It is for
example described in [Gretton et al., 2012a]. Note that it may fail badly in selecting a good
kernel for certain problems.

http://www.shogun-toolbox.org/doc/en/latest/classshogun_1_1CTestStatistic.html
http://www.shogun-toolbox.org/doc/en/latest/classshogun_1_1CQuadraticTimeMMD.html
http://www.shogun-toolbox.org/doc/en/latest/classshogun_1_1CCusotmKernel.html
http://www.shogun-toolbox.org/doc/en/latest/classshogun_1_1CCusotmKernel.html
http://www.shogun-toolbox.org/doc/en/latest/classshogun_1_1CLinearTimeMMD.html
http://www.shogun-toolbox.org/doc/en/latest/classshogun_1_1CCusotmKernel.html
http://www.shogun-toolbox.org/doc/en/latest/classshogun_1_1CLinearTimeMMD.html
http://www.shogun-toolbox.org/doc/en/latest/classshogun_1_1CLinearTimeMMD.html
http://www.shogun-toolbox.org/doc/en/latest/classshogun_1_1CQuadraticTimeMMD.html
http://www.shogun-toolbox.org/doc/en/latest/classshogun_1_1CMMDKernelSelection.html
http://www.shogun-toolbox.org/doc/en/latest/classshogun_1_1CMMDKernelSelectionComb.html
http://www.shogun-toolbox.org/doc/en/latest/classshogun_1_1CCombinedKernel.html
http://www.shogun-toolbox.org/doc/en/latest/classshogun_1_1CMMDKernelSelectionMedian.html
http://www.shogun-toolbox.org/doc/en/latest/classshogun_1_1CGaussianKernel.html

CHAPTER 5. STATISTICAL TESTING 34 of 53

CMMDKernelSelectionMax: Selects from a set of arbitrary baseline kernels a single one that
maximises the used MMD statistic – more specific its estimate.

k∗ = arg max
k∈K

η̂k,

where ηk is an empirical MMD estimate for using a kernel k. This was first described in
Sriperumbudur et al. [2009] and was empirically shown to perform better than the median
heuristic above. However, it remains a heuristic that comes with no guarantees. Since MMD
estimates can be computed in linear and quadratic time, this method works for both methods.
However, for the linear time statistic, there exists a better method.

CMMDKernelSelectionOpt: Selects the optimal single kernel from a set of baseline kernels.
This is done via maximising the ratio of the linear MMD statistic and its standard deviation.

k∗ = arg max
k∈K

η̂k
σ̂k + λ

,

where ηk is a linear time MMD estimate for using a kernel k and σ̂k is a linear time variance
estimate of ηk to which a small number λ is added to prevent division by zero. These are
estimated in a linear time way with the streaming framework that was described in section
5.2.2. Therefore, this method is only available for CLinearTimeMMD. Optimal here means that
the resulting test’s type II error is minimised for a fixed type I error. Important: For this
method to work, the kernel needs to be selected on different data than the test is performed on.
Otherwise, the method will produce wrong results.

CMMDKernelSelectionCombMaxL2: Selects a convex combination of kernels that maximises
the MMD statistic. This is the multiple kernel analogous to CMMDKernelSelectionMax. This is
done via solving the convex program

β∗ = min
β
{βT β : βTη = 1, β � 0},

where β is a vector of the resulting kernel weights and η is a vector of which each component
contains a MMD estimate for a baseline kernel. See [Gretton et al., 2012c] for details. Note
that this method is unable to select a single kernel – even when this would be optimal. Again,
when using the linear time MMD, there are better methods available.

CMMDKernelSelectionCombOpt: Selects a convex combination of kernels that maximises the
MMD statistic divided by its covariance. This corresponds to optimal kernel selection in the
same sense as in class CMMDKernelSelectionOpt and is its multiple kernel analogous. The
convex program to solve is

β∗ = min
β

(Q̂ + λI){βT β : βTη = 1, β � 0},

where again β is a vector of the resulting kernel weights and η is a vector of which each
component contains a MMD estimate for a baseline kernel. The matrix Q̂ is a linear time
estimate of the covariance matrix of the vector η to whose diagonal a small number λ is
added to prevent division by zero. See [Gretton et al., 2012c] for details. In contrast to
CMMDKernelSelectionCombMaxL2, this method is able to select a single kernel when this gives
a lower type II error than a combination. In this sense, it contains CMMDKernelSelectionOpt.

http://www.shogun-toolbox.org/doc/en/latest/classshogun_1_1CMMDKernelSelectionMax.html
http://www.shogun-toolbox.org/doc/en/latest/classshogun_1_1CMMDKernelSelectionOpt.html
http://www.shogun-toolbox.org/doc/en/latest/classshogun_1_1CLinearTimeMMD.html
http://www.shogun-toolbox.org/doc/en/latest/classshogun_1_1CMMDKernelSelectionCombMaxL2.html
http://www.shogun-toolbox.org/doc/en/latest/classshogun_1_1CMMDKernelSelectionMax.html
http://www.shogun-toolbox.org/doc/en/latest/classshogun_1_1CMMDKernelSelectionCombOpt.html
http://www.shogun-toolbox.org/doc/en/latest/classshogun_1_1CMMDKernelSelectionOpt.html
http://www.shogun-toolbox.org/doc/en/latest/classshogun_1_1CMMDKernelSelectionCombMaxL2.html
http://www.shogun-toolbox.org/doc/en/latest/classshogun_1_1CMMDKernelSelectionOpt.html

CHAPTER 5. STATISTICAL TESTING 35 of 53

Procedure In order to use one of the above methods for kernel selection, one has to create a
new instance of CCombinedKernel and use the method append_kernel to append all desired
baseline kernels to it. This combined kernel is then passed to the MMD class. Then, an object
of any of the above kernel selection methods is created and the MMD instance is passed to it
in the constructor. There are then multiple methods to call

• compute_measures returns a vector kernel selection criteria if a single kernel selection
method is used. It will return a vector of selected kernel weights if a combined kernel
selection method is used. For CMMDKernelSelectionMedian, the method does throw an
error.

• select_kernel returns the selected kernel of the method. For single kernels this will
be one of the baseline kernel instances. For the combined kernel case, this will be the
underlying CCombinedKernel instance where the subkernel weights are set to the weights
that were selected by the method.

In order to utilise the selected kernel, it has to be passed to an MMD instance via
set_kernel or the constructor. See the examples for more details.

Examples

There are graphical python examples which plot example data, alternative and null-
distributions. See figures 5.2 and 5.1 for a screenshot for quadratic and linear time MMD
respectively. In addition there are examples for linear time and quadratic time MMD that
illustrate how to estimate type I and type II errors rates, and how to use kernel selection
methods.

5.3 Independence Testing with the HSIC Statistic

Independence testing tries to solve the following problem (taken from [Gretton et al., 2008]):
Let Pxy be a Borel probability measure defined on a domain X × Y , and let Px and Py
be the respective marginal distributions on X and Y . Given samples Z = (X, Y) =
{(x1, y1), ..., (xm, ym)} of size m drawn independently and identically distributed according
to Pxy, does Pxy factorise as Pxy = PxPy? This corresponds to the question: Are Px and Py
statistically independent? An independence test will distinguish between the hypothesises

H0 : Pxy = PxPy

H1 : Pxy 6= PxPy

As for two-sample-testing, it is desirable to have a statistic that is zero if and only if Px
and Py are independent. The so-called Hilbert Schmidt Independence Criterion has this property.
It is the squared Hilbert-Schmidt norm of the cross-covariance operator. We will now briefly
describe where it comes from.

Let F be a RKHS with continuous feature mapping φ : X → F and kernel k : X ×X → R

such that 〈φ(x)φ(x′)〉F = k(x, x′); let G be another RKHS with continuous feature mapping
ψ : X → G and kernel l : Y × Y → R such that 〈ψ(y)ψ(y′)〉G = k(y, y′). The cross-covariance
operator Cxy : G → F is defined such that for all f ∈ F and g ∈ G

〈 f , Cxyg〉F = Exy([f (x)− Ex(f (x))][g(y)− Ey(g(y))]

http://www.shogun-toolbox.org/doc/en/latest/classshogun_1_1CCombinedKernel.html
http://www.shogun-toolbox.org/doc/en/latest/classshogun_1_1CMMDKernelSelectionMedian.html
http://www.shogun-toolbox.org/doc/en/latest/classshogun_1_1CCombinedKernel.html

CHAPTER 5. STATISTICAL TESTING 36 of 53

−5.0 −2.5 0.0 2.5 5.0
x1, y1

−4

−2

0

2

4

x 2
,y

2

Data, shift in x1=1
m=1000

−5 0 5 10
x1, y1

0.00

0.25

0.50

p(
x 1

),
p(

y 1
)

Data PDF in x1, y1

0.00 0.06 0.12 0.18
0

10

20

30

Alternative Dist.
Type II error is 0.0

−0.06 0.00
0

10

20

30

Bootstrapped Null Dist.
Type I error is 0.95

−0.06 0.00
0

8

16

24

Null Dist. Gaussian
Type I error is 0.958

Figure 5.1: Screenshot of graphical python example for linear time MMD.

CHAPTER 5. STATISTICAL TESTING 37 of 53

−4 −2 0 2 4
x1, y1

−3.0

−1.5

0.0

1.5

3.0

x 2
,y

2

Data, shift in x1=0.5
m=100

−4 0 4 8
x1, y1

0.00

0.25

0.50

0.75

p(
x 1

),
p(

y 1
)

Data PDF in x1, y1

0 4 8 12
0.00

0.15

0.30

Alternative Dist.
Type II error is 0.154

0.0 1.5 3.0 4.5
0.0

0.5

1.0

1.5

Bootstrapped Null Dist.
Type I error is 0.95

0.0 1.5 3.0 4.5
0.0

0.5

1.0

1.5

Null Dist. Spectrum
Type I error is 0.968

0.0 1.5 3.0 4.5
0.0

0.5

1.0

Null Dist. Gamma
Type I error is 0.902

Figure 5.2: Screenshot of graphical python example for quadratic time MMD.

CHAPTER 5. STATISTICAL TESTING 38 of 53

The operator itself can be written as

Cxy = Exy(φ(x)− µx)⊗ (ψ(y)− µy)]

where⊗ is the tensor product. This is the generalisation of the cross-covariance matrix between
random vectors in a RKHS. When F and G are universal, then ||Cxy|| is z is zero if and only
if H0 : Pxy = PxPy holds. Collecting everything gives the population expression for the HSIC.
Let x′, y′ be independent copies of the random variables x, y respectively.

HSIC[Pxy,F ,G] = Exx′yy′ [k(x, x′)l(y, y′)] + Exx′ [k(x, x′)]Eyy′ [l(y, y′)] (5.4)

− 2Exy[Ex′ [k(x, x′)]Ey′ [l(y, y′)]

See [Gretton et al., 2008] for details. SHOGUN implements a biased estimator of the HSIC
along with various methods to approximate its null distribution.

5.3.1 Estimate of HSIC

We now describe the method to estimate the HSIC that is implemented in SHOGUN, as de-
scribed in [Gretton et al., 2008, Equation 4]. All methods are implemented in CHSIC. The HSIC
statistic has quadratic time and space costs, since it involves computing full kernel matrices
and centring them.

A biased estimator for expression 5.4 is given by

HSICb[(X, Y),F ,G] = 1
m2 trace(KHLH)

where K, L are the full kernel matrices of kernels k, l respectively and H = I− 1
m 11T is a cen-

tring matrix with 1 being a m×m matrix of ones. In SHOGUN, this expression is not evaluated
using matrix multiplication, but the centring is done by hand. Call compute_statistic in
order to compute the estimate. Note that the method returns m HSICb[(X, Y),F ,G] since null
distribution approximations work on m times null distribution.

Bootstrapping

As for any independence test in SHOGUN, bootstrapping can be used to approximate the
null-distribution with any type of statistic. This results in a consistent, but slow test. Note
that for each sample, the HSIC estimate has to be re-computed. The number of samples to
take is the only parameter. As a rule of thumb, use at least 250 samples. See bootstrap_null

in CTwoDistributionsTestStatistic, CKernelIndependenceTestStatistic, and CHSIC. Note
that since the full kernel matrices have to be stored anyway when computing the HSIC esti-
mate, in bootstrap_null, these are pre-computed automatically for the current bootstrapping
instance. Bootstrapping is the only consistent HSIC test that is implemented in SHOGUN.

Gamma

Another, fast but heuristic method for approximating the null distribution for the HSIC is by
matching the first two moments of a gamma distribution to it [Gretton et al., 2008, Equation
9]. This is not consistent but usually gives good results in practice. However, there are distri-
butions which break the gamma test. Therefore, the type I error should always be monitored.

http://www.shogun-toolbox.org/doc/en/latest/classshogun_1_1CHSIC.html
http://www.shogun-toolbox.org/doc/en/latest/classshogun_1_1CTwoDistributionsTestStatistic.html
http://www.shogun-toolbox.org/doc/en/latest/classshogun_1_1CKernelIndependenceTestStatistic.html
http://www.shogun-toolbox.org/doc/en/latest/classshogun_1_1CHSIC.html

CHAPTER 5. STATISTICAL TESTING 39 of 53

It uses

m HSICb(Z) ∼
xα−1 exp(− x

β)

βαΓ(α)
(5.5)

where

α =
(E(HSICb(Z)))2

var(HSICb(Z))
and β =

m var(HSICb(Z))
(E(HSICb(Z)))2

Then, any threshold and p-value can be computed using the gamma distribution in expres-
sion 5.5. Computational costs are in O(m2), similar for space.

To use that method for testing, use set_null_approximation_method(HSIC_GAMMA), to be
found in CHSIC.

Kernel Selection

Kernel selection for HSIC-based tests is an ongoing subject of research. In the near future, re-
cent results on this topic will be implemented into SHOGUN. In the meantime, a good heuristic
to start with, when using a Gaussian kernel as implemented in CGaussianKernel, is to use the
median distance in the underlying data as kernel bandwidth. This way, the kernel captures at
least the scaling of underlying data. In many cases, this leads to usable first results, however,
the method may badly fail if signal is hidden at another length scale than the one of the overall
data. The method is mentioned in [Gretton et al., 2012a, Appendix C].

In order to do this, note that SHOGUN’s Gaussian kernel implementation uses a different
parametrization as most other literature:

k(x, x′) = exp

(
||x− x′||22

τ

)

where τ is the width that is passed to the constructor of CGaussianKernel. In order to translate
a median distance d to this kernel, simply pass τ = d2.

SHOGUN implements classes that can compute median distances. Create an instance of the
class CEulideanDistance, call the method distance_matrix to compute all pairwise distances
of passed data. Then, use the method matrix_median of CStatistics in order to compute the
median of all elements in the matrix. Store this distance and pass it to the Gaussian kernel as
described above.

Note that the median is a very stable statistic, therefore, it is not necessary to compute
all pairwise distances. A subset of a few hundred points is sufficient. This can be done via
setting a subset to the instance of CFeatures that holds the data. To do so, create a random
index permutation via calling method randperm_vec of class CMath, and only keep the n first
indices where n is the number of distances that should be computed. Call add_subset on
the instance of CFeatures that holds the data and give the indices as parameter. Then, this
instance can be passed to CEulideanDistance as described above. Distances will only be
computed for specified indices. Once the distance matrix is computed, call remove_subset to
reset the original state of the data.

The whole procedure is included in all python examples, including the graphical ones.
Note that since there is a kernel for each distribution, two kernel parameters have to be se-
lected. Using the described median heuristic also leads to good results in some cases, as
mentioned in [Gretton et al., 2008].

http://www.shogun-toolbox.org/doc/en/latest/classshogun_1_1CHSIC.html
http://www.shogun-toolbox.org/doc/en/latest/classshogun_1_1CGaussianKernel.html
http://www.shogun-toolbox.org/doc/en/latest/classshogun_1_1CGaussianKernel.html
http://www.shogun-toolbox.org/doc/en/latest/classshogun_1_1CEulideanDistance.html
http://www.shogun-toolbox.org/doc/en/latest/classshogun_1_1CStatistics.html
http://www.shogun-toolbox.org/doc/en/latest/classshogun_1_1CFeatures.html
http://www.shogun-toolbox.org/doc/en/latest/classshogun_1_1CMath.html
http://www.shogun-toolbox.org/doc/en/latest/classshogun_1_1CFeatures.html
http://www.shogun-toolbox.org/doc/en/latest/classshogun_1_1CEulideanDistance.html

CHAPTER 5. STATISTICAL TESTING 40 of 53

−6 −3 0 3 6
x

−8

−4

0

4

8
y

Data, rotation=π/30.0
m=250

0 1 2 3
0.0

0.5

1.0

1.5

Alternative Dist.
Type II error is 0.13

0.0 0.5 1.0 1.5
0.0

1.5

3.0

4.5

Bootstrapped Null Dist.
Type I error is 0.95

0.0 0.5 1.0 1.5
0

1

2

Null Dist. Gamma
Type I error is 0.96

Figure 5.3: Screenshot of graphical python example for HSIC.

Example

There is a graphical python example which plots example data, alternative and null-
distributions. See figure 5.3.

Chapter 6

Multitask learning

In this chapter we describe multitask learning algorithms available in the SHOGUN toolbox. In
the toolbox we include descriptions of some multitask learning algorithms ported from two
packages: SLEP (the Sparse LEarning Package) and the MALSAR (Multi-tAsk Learning via
StructurAl Regularization) package.

6.1 L1/Lq-norm regularized multitask learning

One of the simplest approaches to learn linear classification and regression models in the
multitask environment is to come with regularization based on L1/Lq norm of the common w
hyperparameter

‖w‖1/q =
T

∑
t=1
‖w‖q.

That kind of regularization in the same time pulls corresponding weights of hyperparameters
wt to be similar and pulls non-relevant feature weights to be zero.

6.1.1 Least squares linear regression

The algorithm learns a multitask linear least squares regression model of regression

ft(x) = 〈wt, x〉+ bt, t = 1, . . . , T,

where T is a number of tasks, from the solution of the following optimization problem:

min
w

T

∑
t=1

∑
i∈Gt

(〈wt, xi〉+ bt − yi)
2 + λ‖w‖1/q,

where G = {G1, . . . , GT} is a set of tasks’ non-overlapping indices, ∀ixi are feature vectors and
∀iyi ∈ R are labels.

The algoritm is implemented in CMultitaskLeastSquaresRegression.

41

http://www.shogun-toolbox.org/doc/en/latest/classshogun_1_1CMultitaskLeastSquaresRegression.html

CHAPTER 6. MULTITASK LEARNING 42 of 53

6.1.2 Logistic regression

The algorithm learns a multitask linear logistic model of classification

ft(x) = sign(〈wt, x〉+ bt), t = 1, . . . , T,

where T is a number of tasks, from the solution of the following optimization problem:

min
w

T

∑
t=1

∑
i∈Gt

1
|Gt|

log(1 + exp (−yi(〈wt, xi〉+ bt)) + λ‖w‖1/q,

where G = {G1, . . . , GT} is a set of tasks’ non-overlapping indices, ∀ixi are feature vectors and
∀iyi ∈ {−1, 1} are labels.

The algorithm is implemented in CMultitaskLogisticRegression.

6.2 Tree structured group lasso multitask learning

In some cases relations between tasks can be described via tree structure.

6.2.1 Least squares linear regression

The algorithm learns a multitask linear least squares regression model of regression

ft(x) = 〈wt, x〉+ bt, t = 1, . . . , T,

where T is a number of tasks, from the solution of the following optimization problem:

min
w

T

∑
t=1

∑
i∈Gt

(〈wt, xi〉+ bt − yi)
2 + λ‖w‖1/q,

where G = {G0, . . . , GT} is a set of tasks’ tree indices, ∀ixi are feature vectors and ∀iyi ∈ R are
labels.

The algorithm is implemented in CMultitaskLeastSquaresRegression.

6.2.2 Logistic regression

The algorithm learns a multitask linear logistic model of classification

ft(x) = sign(〈wt, x〉+ bt), t = 1, . . . , T,

where T is a number of tasks, from the solution of the following optimization problem:

min
w,c

T

∑
t=1

∑
i∈Gt

1
|Gt|

log(1 + exp (−yi(〈wt, xi〉+ bt)) + λ‖w‖1/q,

where G = {G0, . . . , GT} is a set of tasks’ tree indices, ∀ixi are feature vectors and ∀iyi ∈
{−1, 1} are labels.

The algorithm is implemented in CMultitaskLogisticRegression.

http://www.shogun-toolbox.org/doc/en/latest/classshogun_1_1CMultitaskLogisticRegression.html
http://www.shogun-toolbox.org/doc/en/latest/classshogun_1_1CMultitaskLeastSquaresRegression.html
http://www.shogun-toolbox.org/doc/en/latest/classshogun_1_1CMultitaskLogisticRegression.html

CHAPTER 6. MULTITASK LEARNING 43 of 53

6.3 Low rank approximations

Tasks relationship can be constrained with models based on shared low-dimensional subspace.
That can be done via solving the following optimization problem:

min
W=[w1,...,wT]

L(W) + λ rank(W),

where L is a pre-defined loss function. It is known that the problem is NP-hard which makes
it infeasible to solve in real applications. In practice similar problem is

min
W=[w1,...,wT]

L(W) + λ‖W‖∗,

where the sum of the singular values ‖W‖∗ = ∑i σi(W) is the trace norm.

6.3.1 Least squares linear regression

The algorithm learns a multitask linear least squares regression model of regression

ft(x) = 〈wt, x〉+ bt, t = 1, . . . , T,

where T is a number of tasks, from the solution of the following optimization problem:

min
W=[w1,...,wT]

T

∑
t=1

∑
i∈Gt

(〈wt, xi〉+ bt − yi)
2 + ∑

i
σi(W),

where G = {G1, . . . , GT} is a set of tasks’ non-overlapping indices, ∀ixi are feature vectors and
∀iyi ∈ R are labels.

6.3.2 Logistic regression

The algorithm learns a multitask linear logistic model of classification

ft(x) = sign(〈wt, x〉+ bt), t = 1, . . . , T,

where T is a number of tasks, from the solution of the following optimization problem:

min
W=[w1,...,wT]

T

∑
t=1

∑
i∈Gt

1
|Gt|

log(1 + exp (−yi(〈wt, xi〉+ bt)) + ∑
i

σi(W),

where G = {G1, . . . , GT} is a set of tasks’ non-overlapping indices, ∀ixi are feature vectors and
∀iyi ∈ {−1, 1} are labels.

The algorithm is implemented in CMultitaskTraceLogisticRegression.

6.4 Clustered multitask learning

Other approach assuming tasks may exhibit k-cluster structure. That kind of structure makes
learned models of similar tasks (i.e. tasks of one cluster) to be closer to each other than to
other tasks. The approach can be formalized to the following optimization problem

min
W=[w1,...,wT]

L(W) + α(tr WTW − tr FTWTWF) + β tr WTW,

http://www.shogun-toolbox.org/doc/en/latest/classshogun_1_1CMultitaskTraceLogisticRegression.html

CHAPTER 6. MULTITASK LEARNING 44 of 53

where L is a pre-defined loss function. The problem can be also relaxed to be convex:

min
W=[w1,...,wT]

L(W) + ρ1η(1 + η)(tr(W(η I + M)−1WT)

subject to tr M = k, M � I, η = ρ2
ρ1

.

6.4.1 Least squares linear regression

The algorithm learns a multitask linear least squares regression model of regression

ft(x) = 〈wt, x〉+ bt, t = 1, . . . , T,

where T is a number of tasks, from the solution of the following optimization problem:

min
W=[w1,...,wT]

T

∑
t=1

∑
i∈Gt

(〈wt, xi〉+ bt − yi)
2 + ρ1η(1 + η)(tr(W(η I + M)−1WT),

subject to tr M = k, M � I, η = ρ2
ρ1

; where G = {G1, . . . , GT} is a set of tasks’ non-overlapping
indices, ∀ixi are feature vectors and ∀iyi ∈ R are labels.

6.4.2 Logistic regression

The algorithm learns a multitask linear logistic model of classification

ft(x) = sign(〈wt, x〉+ bt), t = 1, . . . , T,

where T is a number of tasks, from the solution of the following optimization problem:

min
W=[w1,...,wT]

T

∑
t=1

∑
i∈Gt

1
|Gt|

log(1 + exp (−yi(〈wt, xi〉+ bt)) + ρ1η(1 + η)(tr(W(η I + M)−1WT),

subject to tr M = k, M � I, η = ρ2
ρ1

; where G = {G1, . . . , GT} is a set of tasks’ non-overlapping
indices, ∀ixi are feature vectors and ∀iyi ∈ {−1, 1} are labels.

The algorithm is implemented in CMultitaskClusteredLogisticRegression.

http://www.shogun-toolbox.org/doc/en/latest/classshogun_1_1CMultitaskClusteredLogisticRegression.html

Appendix A

GNU Free Documentation License

Version 1.3, 3 November 2008
Copyright c© 2000, 2001, 2002, 2007, 2008 Free Software Foundation, Inc.

<http://fsf.org/>

Everyone is permitted to copy and distribute verbatim copies of this license document, but
changing it is not allowed.

Preamble

The purpose of this License is to make a manual, textbook, or other functional and useful
document “free” in the sense of freedom: to assure everyone the effective freedom to copy
and redistribute it, with or without modifying it, either commercially or noncommercially.
Secondarily, this License preserves for the author and publisher a way to get credit for their
work, while not being considered responsible for modifications made by others.

This License is a kind of “copyleft”, which means that derivative works of the document
must themselves be free in the same sense. It complements the GNU General Public License,
which is a copyleft license designed for free software.

We have designed this License in order to use it for manuals for free software, because free
software needs free documentation: a free program should come with manuals providing the
same freedoms that the software does. But this License is not limited to software manuals; it
can be used for any textual work, regardless of subject matter or whether it is published as a
printed book. We recommend this License principally for works whose purpose is instruction
or reference.

1. APPLICABILITY AND DEFINITIONS

This License applies to any manual or other work, in any medium, that contains a notice
placed by the copyright holder saying it can be distributed under the terms of this License.
Such a notice grants a world-wide, royalty-free license, unlimited in duration, to use that
work under the conditions stated herein. The “Document”, below, refers to any such manual
or work. Any member of the public is a licensee, and is addressed as “you”. You accept
the license if you copy, modify or distribute the work in a way requiring permission under
copyright law.

45

APPENDIX A. GNU FREE DOCUMENTATION LICENSE 46 of 53

A “Modified Version” of the Document means any work containing the Document or a
portion of it, either copied verbatim, or with modifications and/or translated into another
language.

A “Secondary Section” is a named appendix or a front-matter section of the Document
that deals exclusively with the relationship of the publishers or authors of the Document to
the Document’s overall subject (or to related matters) and contains nothing that could fall di-
rectly within that overall subject. (Thus, if the Document is in part a textbook of mathematics,
a Secondary Section may not explain any mathematics.) The relationship could be a mat-
ter of historical connection with the subject or with related matters, or of legal, commercial,
philosophical, ethical or political position regarding them.

The “Invariant Sections” are certain Secondary Sections whose titles are designated, as
being those of Invariant Sections, in the notice that says that the Document is released under
this License. If a section does not fit the above definition of Secondary then it is not allowed
to be designated as Invariant. The Document may contain zero Invariant Sections. If the
Document does not identify any Invariant Sections then there are none.

The “Cover Texts” are certain short passages of text that are listed, as Front-Cover Texts or
Back-Cover Texts, in the notice that says that the Document is released under this License. A
Front-Cover Text may be at most 5 words, and a Back-Cover Text may be at most 25 words.

A “Transparent” copy of the Document means a machine-readable copy, represented in
a format whose specification is available to the general public, that is suitable for revising
the document straightforwardly with generic text editors or (for images composed of pixels)
generic paint programs or (for drawings) some widely available drawing editor, and that is
suitable for input to text formatters or for automatic translation to a variety of formats suit-
able for input to text formatters. A copy made in an otherwise Transparent file format whose
markup, or absence of markup, has been arranged to thwart or discourage subsequent mod-
ification by readers is not Transparent. An image format is not Transparent if used for any
substantial amount of text. A copy that is not “Transparent” is called “Opaque”.

Examples of suitable formats for Transparent copies include plain ASCII without markup,
Texinfo input format, LaTeX input format, SGML or XML using a publicly available DTD,
and standard-conforming simple HTML, PostScript or PDF designed for human modification.
Examples of transparent image formats include PNG, XCF and JPG. Opaque formats include
proprietary formats that can be read and edited only by proprietary word processors, SGML or
XML for which the DTD and/or processing tools are not generally available, and the machine-
generated HTML, PostScript or PDF produced by some word processors for output purposes
only.

The “Title Page” means, for a printed book, the title page itself, plus such following pages
as are needed to hold, legibly, the material this License requires to appear in the title page. For
works in formats which do not have any title page as such, “Title Page” means the text near
the most prominent appearance of the work’s title, preceding the beginning of the body of the
text.

The “publisher” means any person or entity that distributes copies of the Document to the
public.

A section “Entitled XYZ” means a named subunit of the Document whose title either
is precisely XYZ or contains XYZ in parentheses following text that translates XYZ in an-
other language. (Here XYZ stands for a specific section name mentioned below, such as
“Acknowledgements”, “Dedications”, “Endorsements”, or “History”.) To “Preserve the Ti-
tle” of such a section when you modify the Document means that it remains a section “Entitled
XYZ” according to this definition.

The Document may include Warranty Disclaimers next to the notice which states that this

APPENDIX A. GNU FREE DOCUMENTATION LICENSE 47 of 53

License applies to the Document. These Warranty Disclaimers are considered to be included
by reference in this License, but only as regards disclaiming warranties: any other implication
that these Warranty Disclaimers may have is void and has no effect on the meaning of this
License.

2. VERBATIM COPYING
You may copy and distribute the Document in any medium, either commercially or non-

commercially, provided that this License, the copyright notices, and the license notice saying
this License applies to the Document are reproduced in all copies, and that you add no other
conditions whatsoever to those of this License. You may not use technical measures to obstruct
or control the reading or further copying of the copies you make or distribute. However, you
may accept compensation in exchange for copies. If you distribute a large enough number of
copies you must also follow the conditions in section 3.

You may also lend copies, under the same conditions stated above, and you may publicly
display copies.

3. COPYING IN QUANTITY
If you publish printed copies (or copies in media that commonly have printed covers) of

the Document, numbering more than 100, and the Document’s license notice requires Cover
Texts, you must enclose the copies in covers that carry, clearly and legibly, all these Cover
Texts: Front-Cover Texts on the front cover, and Back-Cover Texts on the back cover. Both
covers must also clearly and legibly identify you as the publisher of these copies. The front
cover must present the full title with all words of the title equally prominent and visible. You
may add other material on the covers in addition. Copying with changes limited to the covers,
as long as they preserve the title of the Document and satisfy these conditions, can be treated
as verbatim copying in other respects.

If the required texts for either cover are too voluminous to fit legibly, you should put the
first ones listed (as many as fit reasonably) on the actual cover, and continue the rest onto
adjacent pages.

If you publish or distribute Opaque copies of the Document numbering more than 100,
you must either include a machine-readable Transparent copy along with each Opaque copy,
or state in or with each Opaque copy a computer-network location from which the general
network-using public has access to download using public-standard network protocols a com-
plete Transparent copy of the Document, free of added material. If you use the latter option,
you must take reasonably prudent steps, when you begin distribution of Opaque copies in
quantity, to ensure that this Transparent copy will remain thus accessible at the stated location
until at least one year after the last time you distribute an Opaque copy (directly or through
your agents or retailers) of that edition to the public.

It is requested, but not required, that you contact the authors of the Document well before
redistributing any large number of copies, to give them a chance to provide you with an
updated version of the Document.

4. MODIFICATIONS
You may copy and distribute a Modified Version of the Document under the conditions of

sections 2 and 3 above, provided that you release the Modified Version under precisely this
License, with the Modified Version filling the role of the Document, thus licensing distribution

APPENDIX A. GNU FREE DOCUMENTATION LICENSE 48 of 53

and modification of the Modified Version to whoever possesses a copy of it. In addition, you
must do these things in the Modified Version:

A. Use in the Title Page (and on the covers, if any) a title distinct from that of the Document,
and from those of previous versions (which should, if there were any, be listed in the
History section of the Document). You may use the same title as a previous version if the
original publisher of that version gives permission.

B. List on the Title Page, as authors, one or more persons or entities responsible for au-
thorship of the modifications in the Modified Version, together with at least five of the
principal authors of the Document (all of its principal authors, if it has fewer than five),
unless they release you from this requirement.

C. State on the Title page the name of the publisher of the Modified Version, as the publisher.

D. Preserve all the copyright notices of the Document.

E. Add an appropriate copyright notice for your modifications adjacent to the other copy-
right notices.

F. Include, immediately after the copyright notices, a license notice giving the public per-
mission to use the Modified Version under the terms of this License, in the form shown
in the Addendum below.

G. Preserve in that license notice the full lists of Invariant Sections and required Cover Texts
given in the Document’s license notice.

H. Include an unaltered copy of this License.

I. Preserve the section Entitled “History”, Preserve its Title, and add to it an item stating at
least the title, year, new authors, and publisher of the Modified Version as given on the
Title Page. If there is no section Entitled “History” in the Document, create one stating
the title, year, authors, and publisher of the Document as given on its Title Page, then
add an item describing the Modified Version as stated in the previous sentence.

J. Preserve the network location, if any, given in the Document for public access to a Trans-
parent copy of the Document, and likewise the network locations given in the Document
for previous versions it was based on. These may be placed in the “History” section. You
may omit a network location for a work that was published at least four years before the
Document itself, or if the original publisher of the version it refers to gives permission.

K. For any section Entitled “Acknowledgements” or “Dedications”, Preserve the Title of the
section, and preserve in the section all the substance and tone of each of the contributor
acknowledgements and/or dedications given therein.

L. Preserve all the Invariant Sections of the Document, unaltered in their text and in their
titles. Section numbers or the equivalent are not considered part of the section titles.

M. Delete any section Entitled “Endorsements”. Such a section may not be included in the
Modified Version.

N. Do not retitle any existing section to be Entitled “Endorsements” or to conflict in title
with any Invariant Section.

APPENDIX A. GNU FREE DOCUMENTATION LICENSE 49 of 53

O. Preserve any Warranty Disclaimers.

If the Modified Version includes new front-matter sections or appendices that qualify as
Secondary Sections and contain no material copied from the Document, you may at your
option designate some or all of these sections as invariant. To do this, add their titles to the
list of Invariant Sections in the Modified Version’s license notice. These titles must be distinct
from any other section titles.

You may add a section Entitled “Endorsements”, provided it contains nothing but endorse-
ments of your Modified Version by various parties—for example, statements of peer review or
that the text has been approved by an organization as the authoritative definition of a standard.

You may add a passage of up to five words as a Front-Cover Text, and a passage of up to 25
words as a Back-Cover Text, to the end of the list of Cover Texts in the Modified Version. Only
one passage of Front-Cover Text and one of Back-Cover Text may be added by (or through
arrangements made by) any one entity. If the Document already includes a cover text for the
same cover, previously added by you or by arrangement made by the same entity you are
acting on behalf of, you may not add another; but you may replace the old one, on explicit
permission from the previous publisher that added the old one.

The author(s) and publisher(s) of the Document do not by this License give permission to
use their names for publicity for or to assert or imply endorsement of any Modified Version.

5. COMBINING DOCUMENTS
You may combine the Document with other documents released under this License, under

the terms defined in section 4 above for modified versions, provided that you include in the
combination all of the Invariant Sections of all of the original documents, unmodified, and
list them all as Invariant Sections of your combined work in its license notice, and that you
preserve all their Warranty Disclaimers.

The combined work need only contain one copy of this License, and multiple identical
Invariant Sections may be replaced with a single copy. If there are multiple Invariant Sections
with the same name but different contents, make the title of each such section unique by
adding at the end of it, in parentheses, the name of the original author or publisher of that
section if known, or else a unique number. Make the same adjustment to the section titles in
the list of Invariant Sections in the license notice of the combined work.

In the combination, you must combine any sections Entitled “History” in the various origi-
nal documents, forming one section Entitled “History”; likewise combine any sections Entitled
“Acknowledgements”, and any sections Entitled “Dedications”. You must delete all sections
Entitled “Endorsements”.

6. COLLECTIONS OF DOCUMENTS
You may make a collection consisting of the Document and other documents released under

this License, and replace the individual copies of this License in the various documents with a
single copy that is included in the collection, provided that you follow the rules of this License
for verbatim copying of each of the documents in all other respects.

You may extract a single document from such a collection, and distribute it individually
under this License, provided you insert a copy of this License into the extracted document,
and follow this License in all other respects regarding verbatim copying of that document.

7. AGGREGATION WITH INDEPENDENT WORKS

APPENDIX A. GNU FREE DOCUMENTATION LICENSE 50 of 53

A compilation of the Document or its derivatives with other separate and independent
documents or works, in or on a volume of a storage or distribution medium, is called an
“aggregate” if the copyright resulting from the compilation is not used to limit the legal rights
of the compilation’s users beyond what the individual works permit. When the Document
is included in an aggregate, this License does not apply to the other works in the aggregate
which are not themselves derivative works of the Document.

If the Cover Text requirement of section 3 is applicable to these copies of the Document,
then if the Document is less than one half of the entire aggregate, the Document’s Cover Texts
may be placed on covers that bracket the Document within the aggregate, or the electronic
equivalent of covers if the Document is in electronic form. Otherwise they must appear on
printed covers that bracket the whole aggregate.

8. TRANSLATION
Translation is considered a kind of modification, so you may distribute translations of the

Document under the terms of section 4. Replacing Invariant Sections with translations requires
special permission from their copyright holders, but you may include translations of some or
all Invariant Sections in addition to the original versions of these Invariant Sections. You
may include a translation of this License, and all the license notices in the Document, and
any Warranty Disclaimers, provided that you also include the original English version of this
License and the original versions of those notices and disclaimers. In case of a disagreement
between the translation and the original version of this License or a notice or disclaimer, the
original version will prevail.

If a section in the Document is Entitled “Acknowledgements”, “Dedications”, or “History”,
the requirement (section 4) to Preserve its Title (section 1) will typically require changing the
actual title.

9. TERMINATION
You may not copy, modify, sublicense, or distribute the Document except as expressly

provided under this License. Any attempt otherwise to copy, modify, sublicense, or distribute
it is void, and will automatically terminate your rights under this License.

However, if you cease all violation of this License, then your license from a particular
copyright holder is reinstated (a) provisionally, unless and until the copyright holder explicitly
and finally terminates your license, and (b) permanently, if the copyright holder fails to notify
you of the violation by some reasonable means prior to 60 days after the cessation.

Moreover, your license from a particular copyright holder is reinstated permanently if the
copyright holder notifies you of the violation by some reasonable means, this is the first time
you have received notice of violation of this License (for any work) from that copyright holder,
and you cure the violation prior to 30 days after your receipt of the notice.

Termination of your rights under this section does not terminate the licenses of parties who
have received copies or rights from you under this License. If your rights have been terminated
and not permanently reinstated, receipt of a copy of some or all of the same material does not
give you any rights to use it.

10. FUTURE REVISIONS OF THIS LICENSE
The Free Software Foundation may publish new, revised versions of the GNU Free Doc-

umentation License from time to time. Such new versions will be similar in spirit to

APPENDIX A. GNU FREE DOCUMENTATION LICENSE 51 of 53

the present version, but may differ in detail to address new problems or concerns. See
http://www.gnu.org/copyleft/.

Each version of the License is given a distinguishing version number. If the Document
specifies that a particular numbered version of this License “or any later version” applies to it,
you have the option of following the terms and conditions either of that specified version or of
any later version that has been published (not as a draft) by the Free Software Foundation. If
the Document does not specify a version number of this License, you may choose any version
ever published (not as a draft) by the Free Software Foundation. If the Document specifies
that a proxy can decide which future versions of this License can be used, that proxy’s public
statement of acceptance of a version permanently authorizes you to choose that version for the
Document.

11. RELICENSING

“Massive Multiauthor Collaboration Site” (or “MMC Site”) means any World Wide Web
server that publishes copyrightable works and also provides prominent facilities for anybody
to edit those works. A public wiki that anybody can edit is an example of such a server.
A “Massive Multiauthor Collaboration” (or “MMC”) contained in the site means any set of
copyrightable works thus published on the MMC site.

“CC-BY-SA” means the Creative Commons Attribution-Share Alike 3.0 license published by
Creative Commons Corporation, a not-for-profit corporation with a principal place of business
in San Francisco, California, as well as future copyleft versions of that license published by
that same organization.

“Incorporate” means to publish or republish a Document, in whole or in part, as part of
another Document.

An MMC is “eligible for relicensing” if it is licensed under this License, and if all works that
were first published under this License somewhere other than this MMC, and subsequently
incorporated in whole or in part into the MMC, (1) had no cover texts or invariant sections,
and (2) were thus incorporated prior to November 1, 2008.

The operator of an MMC Site may republish an MMC contained in the site under CC-
BY-SA on the same site at any time before August 1, 2009, provided the MMC is eligible for
relicensing.

ADDENDUM: How to use this License for your documents

To use this License in a document you have written, include a copy of the License in the
document and put the following copyright and license notices just after the title page:

Copyright c© YEAR YOUR NAME. Permission is granted to copy, distribute and/or
modify this document under the terms of the GNU Free Documentation License,
Version 1.3 or any later version published by the Free Software Foundation; with
no Invariant Sections, no Front-Cover Texts, and no Back-Cover Texts. A copy of
the license is included in the section entitled “GNU Free Documentation License”.

If you have Invariant Sections, Front-Cover Texts and Back-Cover Texts, replace the “with
. . . Texts.” line with this:

APPENDIX A. GNU FREE DOCUMENTATION LICENSE 52 of 53

with the Invariant Sections being LIST THEIR TITLES, with the Front-Cover Texts
being LIST, and with the Back-Cover Texts being LIST.

If you have Invariant Sections without Cover Texts, or some other combination of the three,
merge those two alternatives to suit the situation.

If your document contains nontrivial examples of program code, we recommend releasing
these examples in parallel under your choice of free software license, such as the GNU General
Public License, to permit their use in free software.

Bibliography

Allwein, E. L., Schapire, R. E., and Singer, Y. (2000). Reducing multiclass to binary: A unifying
approach for margin classifiers. In ICML, pages 9–16.

Beygelzimer, A., Kakade, S., and Langford, J. (2006). Cover trees for nearest neighbor. In ICML,
pages 97–104.

Devroye, L., Gyorfi, L., and Lugosi, G. (1996). A probabilistic theory of pattern recognition.
Springer.

Dietterich, T. G. and Bakiri, G. (1995). Solving multiclass learning problems via error-correcting
output codes. J. Artif. Intell. Res. (JAIR), 2:263–286.

Escalera, S., Pujol, O., and Radeva, P. (2009). Separability of ternary codes for sparse designs
of error-correcting output codes. Pattern Recognition Letters, 30(3):285–297.

Gretton, A., Borgwardt, K. M., Rasch, M. J., Schölkopf, B., and Smola, A. (2012a). A Kernel
Two-Sample Test. Journal of Machine Learning Research, 13:671–721.

Gretton, A., Fukumizu, K., Harchaoui, Z., and Sriperumbudur, B. K. (2012b). A fast, consistent
kernel two-sample test. pages 673—-681.

Gretton, A., Fukumizu, K., Teo, C., and Song, L. (2008). A kernel statistical test of indepen-
dence.

Gretton, A., Sriperumbudur, B., Sejdinovic, D., Strathmann, H., Balakrishnan, S., Pontil, M.,
and Fukumizu, K. (2012c). Optimal kernel choice for large-scale two-sample tests. In Ad-
vances in Neural Information Processing Systems.

Hastie, T. and Tibshirani, R. (1997). Classification by pairwise coupling. In NIPS.

Ng, A. Y., Jordan, M. I., and Weiss, Y. (2001). On spectral clustering: Analysis and an algorithm.
In NIPS, pages 849–856.

Rifkin, R. M. and Klautau, A. (2004). In defense of one-vs-all classification. Journal of Machine
Learning Research, 5:101–141.

Sriperumbudur, B., Fukumizu, K., Gretton, A., Lanckriet, G. R. G., and Schölkopf, B. (2009).
Kernel choice and classifiability for RKHS embeddings of probability distributions. In Ad-
vances in Neural Information Processing Systems.

Strathmann, H. (2012). M.Sc. Adaptive Large-Scale Kernel Two-Sample Testing.

53

	I Essentials
	Learning
	Learning is a search process
	Empirical risk minimization (ERM) principle
	Structural risk minimization (SRM) principle
	Linear models
	Supervised learning
	Classification
	Regression

	Unsupervised learning
	Clustering
	Dimensionality reduction

	Transfer learning
	Multitask learning
	Domain adaptation

	II Objects in SHOGUN
	Kernels
	Data Representations – Features
	Dense Features
	Streaming Features

	III Algorithms
	Multiclass learning
	Natural Multiclass Algorithms
	K-Nearest Neighbors
	Naive Bayes
	Logistic Regression

	Reduction to Binary Problems
	One-vs-Rest and One-vs-One
	Error-Correcting Output Codes

	Tree-style Algorithms

	Statistical Testing
	Statistical Hypothesis Testing
	Two-Sample-Testing with the Maximum Mean Discrepancy
	Quadratic Time MMD Statistic
	Linear Time MMD Statistic
	Precomputed Kernel Matrices for Quadratic Time MMD
	Kernel Selection for MMD

	Independence Testing with the HSIC Statistic
	Estimate of HSIC

	Multitask learning
	L1/Lq-norm regularized multitask learning
	Least squares linear regression
	Logistic regression

	Tree structured group lasso multitask learning
	Least squares linear regression
	Logistic regression

	Low rank approximations
	Least squares linear regression
	Logistic regression

	Clustered multitask learning
	Least squares linear regression
	Logistic regression

	GNU Free Documentation License
	1. APPLICABILITY AND DEFINITIONS
	2. VERBATIM COPYING
	3. COPYING IN QUANTITY
	4. MODIFICATIONS
	5. COMBINING DOCUMENTS
	6. COLLECTIONS OF DOCUMENTS
	7. AGGREGATION WITH INDEPENDENT WORKS
	8. TRANSLATION
	9. TERMINATION
	10. FUTURE REVISIONS OF THIS LICENSE
	11. RELICENSING
	ADDENDUM: How to use this License for your documents

