5 #ifndef DUNE_RANNACHER_TUREK_3D_LOCALBASIS_HH
6 #define DUNE_RANNACHER_TUREK_3D_LOCALBASIS_HH
11 #include <dune/common/fvector.hh>
12 #include <dune/common/fmatrix.hh>
19 template<
class D,
class R >
22 static const int coefficients[ 6 ][ 6 ];
26 R, 1, FieldVector< R, 1 >,
37 std::vector< typename Traits::RangeType > &out )
const
40 RangeFieldType y[ 6 ] = { 1, in[ 0 ], in[ 1 ], in[ 2 ],
41 in[ 0 ]*in[ 0 ] - in[ 1 ]*in[ 1 ],
42 in[ 1 ]*in[ 1 ] - in[ 2 ]*in[ 2 ] };
44 for(
unsigned int i = 0; i <
size(); ++i )
46 out[ i ] = RangeFieldType( 0 );
47 for(
unsigned int j = 0; j < 6; ++j )
48 out[ i ] += coefficients[ i ][ j ]*y[ j ];
49 out[ i ] /= RangeFieldType( 3 );
55 std::vector< typename Traits::JacobianType > &out )
const
58 RangeFieldType y0[ 5 ] = { 1, 0, 0, 2*in[ 0 ], 0 };
59 RangeFieldType y1[ 5 ] = { 0, 1, 0, -2*in[ 1 ], 2*in[ 1 ] };
60 RangeFieldType y2[ 5 ] = { 0, 0, 1, 0, -2*in[ 2 ] };
63 for(
unsigned int i = 0; i <
size(); ++i )
65 out[ i ] = RangeFieldType( 0 );
66 for(
unsigned int j = 0; j < 5; ++j )
68 out[ i ][ 0 ][ 0 ] += coefficients[ i ][ j+1 ]*y0[ j ];
69 out[ i ][ 0 ][ 1 ] += coefficients[ i ][ j+1 ]*y1[ j ];
70 out[ i ][ 0 ][ 2 ] += coefficients[ i ][ j+1 ]*y2[ j ];
72 out[ i ] /= RangeFieldType( 3 );
79 std::vector<typename Traits::RangeType>& out)
const
81 auto totalOrder = std::accumulate(
order.begin(),
order.end(), 0);
82 if (totalOrder == 0) {
84 }
else if (totalOrder == 1) {
86 auto const direction = std::distance(
order.begin(), std::find(
order.begin(),
order.end(), 1));
89 RangeFieldType y[3][5] = { { 1.0, 0.0, 0.0, 2*in[0], 0.0 },
90 { 0.0, 1.0, 0.0, -2*in[1], 2*in[1] },
91 { 0.0, 0.0, 1.0, 0.0, -2*in[2] } };
93 for (std::size_t i = 0; i <
size(); ++i) {
94 out[i] = RangeFieldType{0};
95 for (std::size_t j = 0; j < 5; ++j)
96 out[i] += coefficients[i][j+1] * y[direction][j];
97 out[i] /= RangeFieldType{3};
100 DUNE_THROW(NotImplemented,
"Desired derivative order is not implemented");
116 template<
class D,
class R >
117 const int RannacherTurek3DLocalBasis< D, R >
118 ::coefficients[ 6 ][ 6 ] = {{ 2, -7, 2, 2, 4, 2 },
119 { -1, -1, 2, 2, 4, 2 },
120 { 2, 2, -7, 2, -2, 2 },
121 { -1, 2, -1, 2, -2, 2 },
122 { 2, 2, 2, -7, -2, -4 },
123 { -1, 2, 2, -1, -2, -4 }};
Definition: bdfmcube.hh:18
Type traits for LocalBasisVirtualInterface.
Definition: common/localbasis.hh:34
D DomainType
domain type
Definition: common/localbasis.hh:42
RF RangeFieldType
Export type for range field.
Definition: common/localbasis.hh:45
Definition: rannacherturek3dlocalbasis.hh:21
LocalBasisTraits< D, 3, FieldVector< D, 3 >, R, 1, FieldVector< R, 1 >, FieldMatrix< R, 1, 3 > > Traits
Definition: rannacherturek3dlocalbasis.hh:27
void evaluateFunction(const typename Traits::DomainType &in, std::vector< typename Traits::RangeType > &out) const
evaluate all shape functions
Definition: rannacherturek3dlocalbasis.hh:36
unsigned int size() const
number of shape functions
Definition: rannacherturek3dlocalbasis.hh:30
void evaluateJacobian(const typename Traits::DomainType &in, std::vector< typename Traits::JacobianType > &out) const
evaluate jacobian of all shape functions
Definition: rannacherturek3dlocalbasis.hh:54
unsigned int order() const
polynomial order of the shape functions
Definition: rannacherturek3dlocalbasis.hh:105
void partial(const std::array< unsigned int, 3 > &order, const typename Traits::DomainType &in, std::vector< typename Traits::RangeType > &out) const
Evaluate partial derivatives of all shape functions.
Definition: rannacherturek3dlocalbasis.hh:77