LLVM OpenMP* Runtime Library
kmp_affinity.cpp
1 /*
2  * kmp_affinity.cpp -- affinity management
3  */
4 
5 //===----------------------------------------------------------------------===//
6 //
7 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
8 // See https://llvm.org/LICENSE.txt for license information.
9 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "kmp.h"
14 #include "kmp_affinity.h"
15 #include "kmp_i18n.h"
16 #include "kmp_io.h"
17 #include "kmp_str.h"
18 #include "kmp_wrapper_getpid.h"
19 #if KMP_USE_HIER_SCHED
20 #include "kmp_dispatch_hier.h"
21 #endif
22 
23 // Store the real or imagined machine hierarchy here
24 static hierarchy_info machine_hierarchy;
25 
26 void __kmp_cleanup_hierarchy() { machine_hierarchy.fini(); }
27 
28 void __kmp_get_hierarchy(kmp_uint32 nproc, kmp_bstate_t *thr_bar) {
29  kmp_uint32 depth;
30  // The test below is true if affinity is available, but set to "none". Need to
31  // init on first use of hierarchical barrier.
32  if (TCR_1(machine_hierarchy.uninitialized))
33  machine_hierarchy.init(NULL, nproc);
34 
35  // Adjust the hierarchy in case num threads exceeds original
36  if (nproc > machine_hierarchy.base_num_threads)
37  machine_hierarchy.resize(nproc);
38 
39  depth = machine_hierarchy.depth;
40  KMP_DEBUG_ASSERT(depth > 0);
41 
42  thr_bar->depth = depth;
43  thr_bar->base_leaf_kids = (kmp_uint8)machine_hierarchy.numPerLevel[0] - 1;
44  thr_bar->skip_per_level = machine_hierarchy.skipPerLevel;
45 }
46 
47 #if KMP_AFFINITY_SUPPORTED
48 
49 bool KMPAffinity::picked_api = false;
50 
51 void *KMPAffinity::Mask::operator new(size_t n) { return __kmp_allocate(n); }
52 void *KMPAffinity::Mask::operator new[](size_t n) { return __kmp_allocate(n); }
53 void KMPAffinity::Mask::operator delete(void *p) { __kmp_free(p); }
54 void KMPAffinity::Mask::operator delete[](void *p) { __kmp_free(p); }
55 void *KMPAffinity::operator new(size_t n) { return __kmp_allocate(n); }
56 void KMPAffinity::operator delete(void *p) { __kmp_free(p); }
57 
58 void KMPAffinity::pick_api() {
59  KMPAffinity *affinity_dispatch;
60  if (picked_api)
61  return;
62 #if KMP_USE_HWLOC
63  // Only use Hwloc if affinity isn't explicitly disabled and
64  // user requests Hwloc topology method
65  if (__kmp_affinity_top_method == affinity_top_method_hwloc &&
66  __kmp_affinity_type != affinity_disabled) {
67  affinity_dispatch = new KMPHwlocAffinity();
68  } else
69 #endif
70  {
71  affinity_dispatch = new KMPNativeAffinity();
72  }
73  __kmp_affinity_dispatch = affinity_dispatch;
74  picked_api = true;
75 }
76 
77 void KMPAffinity::destroy_api() {
78  if (__kmp_affinity_dispatch != NULL) {
79  delete __kmp_affinity_dispatch;
80  __kmp_affinity_dispatch = NULL;
81  picked_api = false;
82  }
83 }
84 
85 #define KMP_ADVANCE_SCAN(scan) \
86  while (*scan != '\0') { \
87  scan++; \
88  }
89 
90 // Print the affinity mask to the character array in a pretty format.
91 // The format is a comma separated list of non-negative integers or integer
92 // ranges: e.g., 1,2,3-5,7,9-15
93 // The format can also be the string "{<empty>}" if no bits are set in mask
94 char *__kmp_affinity_print_mask(char *buf, int buf_len,
95  kmp_affin_mask_t *mask) {
96  int start = 0, finish = 0, previous = 0;
97  bool first_range;
98  KMP_ASSERT(buf);
99  KMP_ASSERT(buf_len >= 40);
100  KMP_ASSERT(mask);
101  char *scan = buf;
102  char *end = buf + buf_len - 1;
103 
104  // Check for empty set.
105  if (mask->begin() == mask->end()) {
106  KMP_SNPRINTF(scan, end - scan + 1, "{<empty>}");
107  KMP_ADVANCE_SCAN(scan);
108  KMP_ASSERT(scan <= end);
109  return buf;
110  }
111 
112  first_range = true;
113  start = mask->begin();
114  while (1) {
115  // Find next range
116  // [start, previous] is inclusive range of contiguous bits in mask
117  for (finish = mask->next(start), previous = start;
118  finish == previous + 1 && finish != mask->end();
119  finish = mask->next(finish)) {
120  previous = finish;
121  }
122 
123  // The first range does not need a comma printed before it, but the rest
124  // of the ranges do need a comma beforehand
125  if (!first_range) {
126  KMP_SNPRINTF(scan, end - scan + 1, "%s", ",");
127  KMP_ADVANCE_SCAN(scan);
128  } else {
129  first_range = false;
130  }
131  // Range with three or more contiguous bits in the affinity mask
132  if (previous - start > 1) {
133  KMP_SNPRINTF(scan, end - scan + 1, "%d-%d", static_cast<int>(start),
134  static_cast<int>(previous));
135  } else {
136  // Range with one or two contiguous bits in the affinity mask
137  KMP_SNPRINTF(scan, end - scan + 1, "%d", static_cast<int>(start));
138  KMP_ADVANCE_SCAN(scan);
139  if (previous - start > 0) {
140  KMP_SNPRINTF(scan, end - scan + 1, ",%d", static_cast<int>(previous));
141  }
142  }
143  KMP_ADVANCE_SCAN(scan);
144  // Start over with new start point
145  start = finish;
146  if (start == mask->end())
147  break;
148  // Check for overflow
149  if (end - scan < 2)
150  break;
151  }
152 
153  // Check for overflow
154  KMP_ASSERT(scan <= end);
155  return buf;
156 }
157 #undef KMP_ADVANCE_SCAN
158 
159 // Print the affinity mask to the string buffer object in a pretty format
160 // The format is a comma separated list of non-negative integers or integer
161 // ranges: e.g., 1,2,3-5,7,9-15
162 // The format can also be the string "{<empty>}" if no bits are set in mask
163 kmp_str_buf_t *__kmp_affinity_str_buf_mask(kmp_str_buf_t *buf,
164  kmp_affin_mask_t *mask) {
165  int start = 0, finish = 0, previous = 0;
166  bool first_range;
167  KMP_ASSERT(buf);
168  KMP_ASSERT(mask);
169 
170  __kmp_str_buf_clear(buf);
171 
172  // Check for empty set.
173  if (mask->begin() == mask->end()) {
174  __kmp_str_buf_print(buf, "%s", "{<empty>}");
175  return buf;
176  }
177 
178  first_range = true;
179  start = mask->begin();
180  while (1) {
181  // Find next range
182  // [start, previous] is inclusive range of contiguous bits in mask
183  for (finish = mask->next(start), previous = start;
184  finish == previous + 1 && finish != mask->end();
185  finish = mask->next(finish)) {
186  previous = finish;
187  }
188 
189  // The first range does not need a comma printed before it, but the rest
190  // of the ranges do need a comma beforehand
191  if (!first_range) {
192  __kmp_str_buf_print(buf, "%s", ",");
193  } else {
194  first_range = false;
195  }
196  // Range with three or more contiguous bits in the affinity mask
197  if (previous - start > 1) {
198  __kmp_str_buf_print(buf, "%d-%d", static_cast<int>(start),
199  static_cast<int>(previous));
200  } else {
201  // Range with one or two contiguous bits in the affinity mask
202  __kmp_str_buf_print(buf, "%d", static_cast<int>(start));
203  if (previous - start > 0) {
204  __kmp_str_buf_print(buf, ",%d", static_cast<int>(previous));
205  }
206  }
207  // Start over with new start point
208  start = finish;
209  if (start == mask->end())
210  break;
211  }
212  return buf;
213 }
214 
215 void __kmp_affinity_entire_machine_mask(kmp_affin_mask_t *mask) {
216  KMP_CPU_ZERO(mask);
217 
218 #if KMP_GROUP_AFFINITY
219 
220  if (__kmp_num_proc_groups > 1) {
221  int group;
222  KMP_DEBUG_ASSERT(__kmp_GetActiveProcessorCount != NULL);
223  for (group = 0; group < __kmp_num_proc_groups; group++) {
224  int i;
225  int num = __kmp_GetActiveProcessorCount(group);
226  for (i = 0; i < num; i++) {
227  KMP_CPU_SET(i + group * (CHAR_BIT * sizeof(DWORD_PTR)), mask);
228  }
229  }
230  } else
231 
232 #endif /* KMP_GROUP_AFFINITY */
233 
234  {
235  int proc;
236  for (proc = 0; proc < __kmp_xproc; proc++) {
237  KMP_CPU_SET(proc, mask);
238  }
239  }
240 }
241 
242 // When sorting by labels, __kmp_affinity_assign_child_nums() must first be
243 // called to renumber the labels from [0..n] and place them into the child_num
244 // vector of the address object. This is done in case the labels used for
245 // the children at one node of the hierarchy differ from those used for
246 // another node at the same level. Example: suppose the machine has 2 nodes
247 // with 2 packages each. The first node contains packages 601 and 602, and
248 // second node contains packages 603 and 604. If we try to sort the table
249 // for "scatter" affinity, the table will still be sorted 601, 602, 603, 604
250 // because we are paying attention to the labels themselves, not the ordinal
251 // child numbers. By using the child numbers in the sort, the result is
252 // {0,0}=601, {0,1}=603, {1,0}=602, {1,1}=604.
253 static void __kmp_affinity_assign_child_nums(AddrUnsPair *address2os,
254  int numAddrs) {
255  KMP_DEBUG_ASSERT(numAddrs > 0);
256  int depth = address2os->first.depth;
257  unsigned *counts = (unsigned *)__kmp_allocate(depth * sizeof(unsigned));
258  unsigned *lastLabel = (unsigned *)__kmp_allocate(depth * sizeof(unsigned));
259  int labCt;
260  for (labCt = 0; labCt < depth; labCt++) {
261  address2os[0].first.childNums[labCt] = counts[labCt] = 0;
262  lastLabel[labCt] = address2os[0].first.labels[labCt];
263  }
264  int i;
265  for (i = 1; i < numAddrs; i++) {
266  for (labCt = 0; labCt < depth; labCt++) {
267  if (address2os[i].first.labels[labCt] != lastLabel[labCt]) {
268  int labCt2;
269  for (labCt2 = labCt + 1; labCt2 < depth; labCt2++) {
270  counts[labCt2] = 0;
271  lastLabel[labCt2] = address2os[i].first.labels[labCt2];
272  }
273  counts[labCt]++;
274  lastLabel[labCt] = address2os[i].first.labels[labCt];
275  break;
276  }
277  }
278  for (labCt = 0; labCt < depth; labCt++) {
279  address2os[i].first.childNums[labCt] = counts[labCt];
280  }
281  for (; labCt < (int)Address::maxDepth; labCt++) {
282  address2os[i].first.childNums[labCt] = 0;
283  }
284  }
285  __kmp_free(lastLabel);
286  __kmp_free(counts);
287 }
288 
289 // All of the __kmp_affinity_create_*_map() routines should set
290 // __kmp_affinity_masks to a vector of affinity mask objects of length
291 // __kmp_affinity_num_masks, if __kmp_affinity_type != affinity_none, and return
292 // the number of levels in the machine topology tree (zero if
293 // __kmp_affinity_type == affinity_none).
294 //
295 // All of the __kmp_affinity_create_*_map() routines should set
296 // *__kmp_affin_fullMask to the affinity mask for the initialization thread.
297 // They need to save and restore the mask, and it could be needed later, so
298 // saving it is just an optimization to avoid calling kmp_get_system_affinity()
299 // again.
300 kmp_affin_mask_t *__kmp_affin_fullMask = NULL;
301 
302 static int nCoresPerPkg, nPackages;
303 static int __kmp_nThreadsPerCore;
304 #ifndef KMP_DFLT_NTH_CORES
305 static int __kmp_ncores;
306 #endif
307 static int *__kmp_pu_os_idx = NULL;
308 
309 // __kmp_affinity_uniform_topology() doesn't work when called from
310 // places which support arbitrarily many levels in the machine topology
311 // map, i.e. the non-default cases in __kmp_affinity_create_cpuinfo_map()
312 // __kmp_affinity_create_x2apicid_map().
313 inline static bool __kmp_affinity_uniform_topology() {
314  return __kmp_avail_proc == (__kmp_nThreadsPerCore * nCoresPerPkg * nPackages);
315 }
316 
317 // Print out the detailed machine topology map, i.e. the physical locations
318 // of each OS proc.
319 static void __kmp_affinity_print_topology(AddrUnsPair *address2os, int len,
320  int depth, int pkgLevel,
321  int coreLevel, int threadLevel) {
322  int proc;
323 
324  KMP_INFORM(OSProcToPhysicalThreadMap, "KMP_AFFINITY");
325  for (proc = 0; proc < len; proc++) {
326  int level;
327  kmp_str_buf_t buf;
328  __kmp_str_buf_init(&buf);
329  for (level = 0; level < depth; level++) {
330  if (level == threadLevel) {
331  __kmp_str_buf_print(&buf, "%s ", KMP_I18N_STR(Thread));
332  } else if (level == coreLevel) {
333  __kmp_str_buf_print(&buf, "%s ", KMP_I18N_STR(Core));
334  } else if (level == pkgLevel) {
335  __kmp_str_buf_print(&buf, "%s ", KMP_I18N_STR(Package));
336  } else if (level > pkgLevel) {
337  __kmp_str_buf_print(&buf, "%s_%d ", KMP_I18N_STR(Node),
338  level - pkgLevel - 1);
339  } else {
340  __kmp_str_buf_print(&buf, "L%d ", level);
341  }
342  __kmp_str_buf_print(&buf, "%d ", address2os[proc].first.labels[level]);
343  }
344  KMP_INFORM(OSProcMapToPack, "KMP_AFFINITY", address2os[proc].second,
345  buf.str);
346  __kmp_str_buf_free(&buf);
347  }
348 }
349 
350 #if KMP_USE_HWLOC
351 
352 static void __kmp_affinity_print_hwloc_tp(AddrUnsPair *addrP, int len,
353  int depth, int *levels) {
354  int proc;
355  kmp_str_buf_t buf;
356  __kmp_str_buf_init(&buf);
357  KMP_INFORM(OSProcToPhysicalThreadMap, "KMP_AFFINITY");
358  for (proc = 0; proc < len; proc++) {
359  __kmp_str_buf_print(&buf, "%s %d ", KMP_I18N_STR(Package),
360  addrP[proc].first.labels[0]);
361  if (depth > 1) {
362  int level = 1; // iterate over levels
363  int label = 1; // iterate over labels
364  if (__kmp_numa_detected)
365  // node level follows package
366  if (levels[level++] > 0)
367  __kmp_str_buf_print(&buf, "%s %d ", KMP_I18N_STR(Node),
368  addrP[proc].first.labels[label++]);
369  if (__kmp_tile_depth > 0)
370  // tile level follows node if any, or package
371  if (levels[level++] > 0)
372  __kmp_str_buf_print(&buf, "%s %d ", KMP_I18N_STR(Tile),
373  addrP[proc].first.labels[label++]);
374  if (levels[level++] > 0)
375  // core level follows
376  __kmp_str_buf_print(&buf, "%s %d ", KMP_I18N_STR(Core),
377  addrP[proc].first.labels[label++]);
378  if (levels[level++] > 0)
379  // thread level is the latest
380  __kmp_str_buf_print(&buf, "%s %d ", KMP_I18N_STR(Thread),
381  addrP[proc].first.labels[label++]);
382  KMP_DEBUG_ASSERT(label == depth);
383  }
384  KMP_INFORM(OSProcMapToPack, "KMP_AFFINITY", addrP[proc].second, buf.str);
385  __kmp_str_buf_clear(&buf);
386  }
387  __kmp_str_buf_free(&buf);
388 }
389 
390 static int nNodePerPkg, nTilePerPkg, nTilePerNode, nCorePerNode, nCorePerTile;
391 
392 // This function removes the topology levels that are radix 1 and don't offer
393 // further information about the topology. The most common example is when you
394 // have one thread context per core, we don't want the extra thread context
395 // level if it offers no unique labels. So they are removed.
396 // return value: the new depth of address2os
397 static int __kmp_affinity_remove_radix_one_levels(AddrUnsPair *addrP, int nTh,
398  int depth, int *levels) {
399  int level;
400  int i;
401  int radix1_detected;
402  int new_depth = depth;
403  for (level = depth - 1; level > 0; --level) {
404  // Detect if this level is radix 1
405  radix1_detected = 1;
406  for (i = 1; i < nTh; ++i) {
407  if (addrP[0].first.labels[level] != addrP[i].first.labels[level]) {
408  // There are differing label values for this level so it stays
409  radix1_detected = 0;
410  break;
411  }
412  }
413  if (!radix1_detected)
414  continue;
415  // Radix 1 was detected
416  --new_depth;
417  levels[level] = -1; // mark level as not present in address2os array
418  if (level == new_depth) {
419  // "turn off" deepest level, just decrement the depth that removes
420  // the level from address2os array
421  for (i = 0; i < nTh; ++i) {
422  addrP[i].first.depth--;
423  }
424  } else {
425  // For other levels, we move labels over and also reduce the depth
426  int j;
427  for (j = level; j < new_depth; ++j) {
428  for (i = 0; i < nTh; ++i) {
429  addrP[i].first.labels[j] = addrP[i].first.labels[j + 1];
430  addrP[i].first.depth--;
431  }
432  levels[j + 1] -= 1;
433  }
434  }
435  }
436  return new_depth;
437 }
438 
439 // Returns the number of objects of type 'type' below 'obj' within the topology
440 // tree structure. e.g., if obj is a HWLOC_OBJ_PACKAGE object, and type is
441 // HWLOC_OBJ_PU, then this will return the number of PU's under the SOCKET
442 // object.
443 static int __kmp_hwloc_get_nobjs_under_obj(hwloc_obj_t obj,
444  hwloc_obj_type_t type) {
445  int retval = 0;
446  hwloc_obj_t first;
447  for (first = hwloc_get_obj_below_by_type(__kmp_hwloc_topology, obj->type,
448  obj->logical_index, type, 0);
449  first != NULL &&
450  hwloc_get_ancestor_obj_by_type(__kmp_hwloc_topology, obj->type, first) ==
451  obj;
452  first = hwloc_get_next_obj_by_type(__kmp_hwloc_topology, first->type,
453  first)) {
454  ++retval;
455  }
456  return retval;
457 }
458 
459 static int __kmp_hwloc_count_children_by_depth(hwloc_topology_t t,
460  hwloc_obj_t o,
461  kmp_hwloc_depth_t depth,
462  hwloc_obj_t *f) {
463  if (o->depth == depth) {
464  if (*f == NULL)
465  *f = o; // output first descendant found
466  return 1;
467  }
468  int sum = 0;
469  for (unsigned i = 0; i < o->arity; i++)
470  sum += __kmp_hwloc_count_children_by_depth(t, o->children[i], depth, f);
471  return sum; // will be 0 if no one found (as PU arity is 0)
472 }
473 
474 static int __kmp_hwloc_count_children_by_type(hwloc_topology_t t, hwloc_obj_t o,
475  hwloc_obj_type_t type,
476  hwloc_obj_t *f) {
477  if (!hwloc_compare_types(o->type, type)) {
478  if (*f == NULL)
479  *f = o; // output first descendant found
480  return 1;
481  }
482  int sum = 0;
483  for (unsigned i = 0; i < o->arity; i++)
484  sum += __kmp_hwloc_count_children_by_type(t, o->children[i], type, f);
485  return sum; // will be 0 if no one found (as PU arity is 0)
486 }
487 
488 static int __kmp_hwloc_process_obj_core_pu(AddrUnsPair *addrPair,
489  int &nActiveThreads,
490  int &num_active_cores,
491  hwloc_obj_t obj, int depth,
492  int *labels) {
493  hwloc_obj_t core = NULL;
494  hwloc_topology_t &tp = __kmp_hwloc_topology;
495  int NC = __kmp_hwloc_count_children_by_type(tp, obj, HWLOC_OBJ_CORE, &core);
496  for (int core_id = 0; core_id < NC; ++core_id, core = core->next_cousin) {
497  hwloc_obj_t pu = NULL;
498  KMP_DEBUG_ASSERT(core != NULL);
499  int num_active_threads = 0;
500  int NT = __kmp_hwloc_count_children_by_type(tp, core, HWLOC_OBJ_PU, &pu);
501  // int NT = core->arity; pu = core->first_child; // faster?
502  for (int pu_id = 0; pu_id < NT; ++pu_id, pu = pu->next_cousin) {
503  KMP_DEBUG_ASSERT(pu != NULL);
504  if (!KMP_CPU_ISSET(pu->os_index, __kmp_affin_fullMask))
505  continue; // skip inactive (inaccessible) unit
506  Address addr(depth + 2);
507  KA_TRACE(20, ("Hwloc inserting %d (%d) %d (%d) %d (%d) into address2os\n",
508  obj->os_index, obj->logical_index, core->os_index,
509  core->logical_index, pu->os_index, pu->logical_index));
510  for (int i = 0; i < depth; ++i)
511  addr.labels[i] = labels[i]; // package, etc.
512  addr.labels[depth] = core_id; // core
513  addr.labels[depth + 1] = pu_id; // pu
514  addrPair[nActiveThreads] = AddrUnsPair(addr, pu->os_index);
515  __kmp_pu_os_idx[nActiveThreads] = pu->os_index;
516  nActiveThreads++;
517  ++num_active_threads; // count active threads per core
518  }
519  if (num_active_threads) { // were there any active threads on the core?
520  ++__kmp_ncores; // count total active cores
521  ++num_active_cores; // count active cores per socket
522  if (num_active_threads > __kmp_nThreadsPerCore)
523  __kmp_nThreadsPerCore = num_active_threads; // calc maximum
524  }
525  }
526  return 0;
527 }
528 
529 // Check if NUMA node detected below the package,
530 // and if tile object is detected and return its depth
531 static int __kmp_hwloc_check_numa() {
532  hwloc_topology_t &tp = __kmp_hwloc_topology;
533  hwloc_obj_t hT, hC, hL, hN, hS; // hwloc objects (pointers to)
534  int depth, l2cache_depth, package_depth;
535 
536  // Get some PU
537  hT = hwloc_get_obj_by_type(tp, HWLOC_OBJ_PU, 0);
538  if (hT == NULL) // something has gone wrong
539  return 1;
540 
541  // check NUMA node below PACKAGE
542  hN = hwloc_get_ancestor_obj_by_type(tp, HWLOC_OBJ_NUMANODE, hT);
543  hS = hwloc_get_ancestor_obj_by_type(tp, HWLOC_OBJ_PACKAGE, hT);
544  KMP_DEBUG_ASSERT(hS != NULL);
545  if (hN != NULL && hN->depth > hS->depth) {
546  __kmp_numa_detected = TRUE; // socket includes node(s)
547  if (__kmp_affinity_gran == affinity_gran_node) {
548  __kmp_affinity_gran = affinity_gran_numa;
549  }
550  }
551 
552  package_depth = hwloc_get_type_depth(tp, HWLOC_OBJ_PACKAGE);
553  l2cache_depth = hwloc_get_cache_type_depth(tp, 2, HWLOC_OBJ_CACHE_UNIFIED);
554  // check tile, get object by depth because of multiple caches possible
555  depth = (l2cache_depth < package_depth) ? package_depth : l2cache_depth;
556  hL = hwloc_get_ancestor_obj_by_depth(tp, depth, hT);
557  hC = NULL; // not used, but reset it here just in case
558  if (hL != NULL &&
559  __kmp_hwloc_count_children_by_type(tp, hL, HWLOC_OBJ_CORE, &hC) > 1)
560  __kmp_tile_depth = depth; // tile consists of multiple cores
561  return 0;
562 }
563 
564 static int __kmp_affinity_create_hwloc_map(AddrUnsPair **address2os,
565  kmp_i18n_id_t *const msg_id) {
566  hwloc_topology_t &tp = __kmp_hwloc_topology; // shortcut of a long name
567  *address2os = NULL;
568  *msg_id = kmp_i18n_null;
569 
570  // Save the affinity mask for the current thread.
571  kmp_affin_mask_t *oldMask;
572  KMP_CPU_ALLOC(oldMask);
573  __kmp_get_system_affinity(oldMask, TRUE);
574  __kmp_hwloc_check_numa();
575 
576  if (!KMP_AFFINITY_CAPABLE()) {
577  // Hack to try and infer the machine topology using only the data
578  // available from cpuid on the current thread, and __kmp_xproc.
579  KMP_ASSERT(__kmp_affinity_type == affinity_none);
580 
581  nCoresPerPkg = __kmp_hwloc_get_nobjs_under_obj(
582  hwloc_get_obj_by_type(tp, HWLOC_OBJ_PACKAGE, 0), HWLOC_OBJ_CORE);
583  __kmp_nThreadsPerCore = __kmp_hwloc_get_nobjs_under_obj(
584  hwloc_get_obj_by_type(tp, HWLOC_OBJ_CORE, 0), HWLOC_OBJ_PU);
585  __kmp_ncores = __kmp_xproc / __kmp_nThreadsPerCore;
586  nPackages = (__kmp_xproc + nCoresPerPkg - 1) / nCoresPerPkg;
587  if (__kmp_affinity_verbose) {
588  KMP_INFORM(AffNotCapableUseLocCpuidL11, "KMP_AFFINITY");
589  KMP_INFORM(AvailableOSProc, "KMP_AFFINITY", __kmp_avail_proc);
590  if (__kmp_affinity_uniform_topology()) {
591  KMP_INFORM(Uniform, "KMP_AFFINITY");
592  } else {
593  KMP_INFORM(NonUniform, "KMP_AFFINITY");
594  }
595  KMP_INFORM(Topology, "KMP_AFFINITY", nPackages, nCoresPerPkg,
596  __kmp_nThreadsPerCore, __kmp_ncores);
597  }
598  KMP_CPU_FREE(oldMask);
599  return 0;
600  }
601 
602  int depth = 3;
603  int levels[5] = {0, 1, 2, 3, 4}; // package, [node,] [tile,] core, thread
604  int labels[3] = {0}; // package [,node] [,tile] - head of labels array
605  if (__kmp_numa_detected)
606  ++depth;
607  if (__kmp_tile_depth)
608  ++depth;
609 
610  // Allocate the data structure to be returned.
611  AddrUnsPair *retval =
612  (AddrUnsPair *)__kmp_allocate(sizeof(AddrUnsPair) * __kmp_avail_proc);
613  KMP_DEBUG_ASSERT(__kmp_pu_os_idx == NULL);
614  __kmp_pu_os_idx = (int *)__kmp_allocate(sizeof(int) * __kmp_avail_proc);
615 
616  // When affinity is off, this routine will still be called to set
617  // __kmp_ncores, as well as __kmp_nThreadsPerCore,
618  // nCoresPerPkg, & nPackages. Make sure all these vars are set
619  // correctly, and return if affinity is not enabled.
620 
621  hwloc_obj_t socket, node, tile;
622  int nActiveThreads = 0;
623  int socket_id = 0;
624  // re-calculate globals to count only accessible resources
625  __kmp_ncores = nPackages = nCoresPerPkg = __kmp_nThreadsPerCore = 0;
626  nNodePerPkg = nTilePerPkg = nTilePerNode = nCorePerNode = nCorePerTile = 0;
627  for (socket = hwloc_get_obj_by_type(tp, HWLOC_OBJ_PACKAGE, 0); socket != NULL;
628  socket = hwloc_get_next_obj_by_type(tp, HWLOC_OBJ_PACKAGE, socket),
629  socket_id++) {
630  labels[0] = socket_id;
631  if (__kmp_numa_detected) {
632  int NN;
633  int n_active_nodes = 0;
634  node = NULL;
635  NN = __kmp_hwloc_count_children_by_type(tp, socket, HWLOC_OBJ_NUMANODE,
636  &node);
637  for (int node_id = 0; node_id < NN; ++node_id, node = node->next_cousin) {
638  labels[1] = node_id;
639  if (__kmp_tile_depth) {
640  // NUMA + tiles
641  int NT;
642  int n_active_tiles = 0;
643  tile = NULL;
644  NT = __kmp_hwloc_count_children_by_depth(tp, node, __kmp_tile_depth,
645  &tile);
646  for (int tl_id = 0; tl_id < NT; ++tl_id, tile = tile->next_cousin) {
647  labels[2] = tl_id;
648  int n_active_cores = 0;
649  __kmp_hwloc_process_obj_core_pu(retval, nActiveThreads,
650  n_active_cores, tile, 3, labels);
651  if (n_active_cores) { // were there any active cores on the socket?
652  ++n_active_tiles; // count active tiles per node
653  if (n_active_cores > nCorePerTile)
654  nCorePerTile = n_active_cores; // calc maximum
655  }
656  }
657  if (n_active_tiles) { // were there any active tiles on the socket?
658  ++n_active_nodes; // count active nodes per package
659  if (n_active_tiles > nTilePerNode)
660  nTilePerNode = n_active_tiles; // calc maximum
661  }
662  } else {
663  // NUMA, no tiles
664  int n_active_cores = 0;
665  __kmp_hwloc_process_obj_core_pu(retval, nActiveThreads,
666  n_active_cores, node, 2, labels);
667  if (n_active_cores) { // were there any active cores on the socket?
668  ++n_active_nodes; // count active nodes per package
669  if (n_active_cores > nCorePerNode)
670  nCorePerNode = n_active_cores; // calc maximum
671  }
672  }
673  }
674  if (n_active_nodes) { // were there any active nodes on the socket?
675  ++nPackages; // count total active packages
676  if (n_active_nodes > nNodePerPkg)
677  nNodePerPkg = n_active_nodes; // calc maximum
678  }
679  } else {
680  if (__kmp_tile_depth) {
681  // no NUMA, tiles
682  int NT;
683  int n_active_tiles = 0;
684  tile = NULL;
685  NT = __kmp_hwloc_count_children_by_depth(tp, socket, __kmp_tile_depth,
686  &tile);
687  for (int tl_id = 0; tl_id < NT; ++tl_id, tile = tile->next_cousin) {
688  labels[1] = tl_id;
689  int n_active_cores = 0;
690  __kmp_hwloc_process_obj_core_pu(retval, nActiveThreads,
691  n_active_cores, tile, 2, labels);
692  if (n_active_cores) { // were there any active cores on the socket?
693  ++n_active_tiles; // count active tiles per package
694  if (n_active_cores > nCorePerTile)
695  nCorePerTile = n_active_cores; // calc maximum
696  }
697  }
698  if (n_active_tiles) { // were there any active tiles on the socket?
699  ++nPackages; // count total active packages
700  if (n_active_tiles > nTilePerPkg)
701  nTilePerPkg = n_active_tiles; // calc maximum
702  }
703  } else {
704  // no NUMA, no tiles
705  int n_active_cores = 0;
706  __kmp_hwloc_process_obj_core_pu(retval, nActiveThreads, n_active_cores,
707  socket, 1, labels);
708  if (n_active_cores) { // were there any active cores on the socket?
709  ++nPackages; // count total active packages
710  if (n_active_cores > nCoresPerPkg)
711  nCoresPerPkg = n_active_cores; // calc maximum
712  }
713  }
714  }
715  }
716 
717  // If there's only one thread context to bind to, return now.
718  KMP_DEBUG_ASSERT(nActiveThreads == __kmp_avail_proc);
719  KMP_ASSERT(nActiveThreads > 0);
720  if (nActiveThreads == 1) {
721  __kmp_ncores = nPackages = 1;
722  __kmp_nThreadsPerCore = nCoresPerPkg = 1;
723  if (__kmp_affinity_verbose) {
724  char buf[KMP_AFFIN_MASK_PRINT_LEN];
725  __kmp_affinity_print_mask(buf, KMP_AFFIN_MASK_PRINT_LEN, oldMask);
726 
727  KMP_INFORM(AffUsingHwloc, "KMP_AFFINITY");
728  if (__kmp_affinity_respect_mask) {
729  KMP_INFORM(InitOSProcSetRespect, "KMP_AFFINITY", buf);
730  } else {
731  KMP_INFORM(InitOSProcSetNotRespect, "KMP_AFFINITY", buf);
732  }
733  KMP_INFORM(AvailableOSProc, "KMP_AFFINITY", __kmp_avail_proc);
734  KMP_INFORM(Uniform, "KMP_AFFINITY");
735  KMP_INFORM(Topology, "KMP_AFFINITY", nPackages, nCoresPerPkg,
736  __kmp_nThreadsPerCore, __kmp_ncores);
737  }
738 
739  if (__kmp_affinity_type == affinity_none) {
740  __kmp_free(retval);
741  KMP_CPU_FREE(oldMask);
742  return 0;
743  }
744 
745  // Form an Address object which only includes the package level.
746  Address addr(1);
747  addr.labels[0] = retval[0].first.labels[0];
748  retval[0].first = addr;
749 
750  if (__kmp_affinity_gran_levels < 0) {
751  __kmp_affinity_gran_levels = 0;
752  }
753 
754  if (__kmp_affinity_verbose) {
755  __kmp_affinity_print_topology(retval, 1, 1, 0, -1, -1);
756  }
757 
758  *address2os = retval;
759  KMP_CPU_FREE(oldMask);
760  return 1;
761  }
762 
763  // Sort the table by physical Id.
764  qsort(retval, nActiveThreads, sizeof(*retval),
765  __kmp_affinity_cmp_Address_labels);
766 
767  // Check to see if the machine topology is uniform
768  int nPUs = nPackages * __kmp_nThreadsPerCore;
769  if (__kmp_numa_detected) {
770  if (__kmp_tile_depth) { // NUMA + tiles
771  nPUs *= (nNodePerPkg * nTilePerNode * nCorePerTile);
772  } else { // NUMA, no tiles
773  nPUs *= (nNodePerPkg * nCorePerNode);
774  }
775  } else {
776  if (__kmp_tile_depth) { // no NUMA, tiles
777  nPUs *= (nTilePerPkg * nCorePerTile);
778  } else { // no NUMA, no tiles
779  nPUs *= nCoresPerPkg;
780  }
781  }
782  unsigned uniform = (nPUs == nActiveThreads);
783 
784  // Print the machine topology summary.
785  if (__kmp_affinity_verbose) {
786  char mask[KMP_AFFIN_MASK_PRINT_LEN];
787  __kmp_affinity_print_mask(mask, KMP_AFFIN_MASK_PRINT_LEN, oldMask);
788  if (__kmp_affinity_respect_mask) {
789  KMP_INFORM(InitOSProcSetRespect, "KMP_AFFINITY", mask);
790  } else {
791  KMP_INFORM(InitOSProcSetNotRespect, "KMP_AFFINITY", mask);
792  }
793  KMP_INFORM(AvailableOSProc, "KMP_AFFINITY", __kmp_avail_proc);
794  if (uniform) {
795  KMP_INFORM(Uniform, "KMP_AFFINITY");
796  } else {
797  KMP_INFORM(NonUniform, "KMP_AFFINITY");
798  }
799  if (__kmp_numa_detected) {
800  if (__kmp_tile_depth) { // NUMA + tiles
801  KMP_INFORM(TopologyExtraNoTi, "KMP_AFFINITY", nPackages, nNodePerPkg,
802  nTilePerNode, nCorePerTile, __kmp_nThreadsPerCore,
803  __kmp_ncores);
804  } else { // NUMA, no tiles
805  KMP_INFORM(TopologyExtraNode, "KMP_AFFINITY", nPackages, nNodePerPkg,
806  nCorePerNode, __kmp_nThreadsPerCore, __kmp_ncores);
807  nPUs *= (nNodePerPkg * nCorePerNode);
808  }
809  } else {
810  if (__kmp_tile_depth) { // no NUMA, tiles
811  KMP_INFORM(TopologyExtraTile, "KMP_AFFINITY", nPackages, nTilePerPkg,
812  nCorePerTile, __kmp_nThreadsPerCore, __kmp_ncores);
813  } else { // no NUMA, no tiles
814  kmp_str_buf_t buf;
815  __kmp_str_buf_init(&buf);
816  __kmp_str_buf_print(&buf, "%d", nPackages);
817  KMP_INFORM(TopologyExtra, "KMP_AFFINITY", buf.str, nCoresPerPkg,
818  __kmp_nThreadsPerCore, __kmp_ncores);
819  __kmp_str_buf_free(&buf);
820  }
821  }
822  }
823 
824  if (__kmp_affinity_type == affinity_none) {
825  __kmp_free(retval);
826  KMP_CPU_FREE(oldMask);
827  return 0;
828  }
829 
830  int depth_full = depth; // number of levels before compressing
831  // Find any levels with radix 1, and remove them from the map
832  // (except for the package level).
833  depth = __kmp_affinity_remove_radix_one_levels(retval, nActiveThreads, depth,
834  levels);
835  KMP_DEBUG_ASSERT(__kmp_affinity_gran != affinity_gran_default);
836  if (__kmp_affinity_gran_levels < 0) {
837  // Set the granularity level based on what levels are modeled
838  // in the machine topology map.
839  __kmp_affinity_gran_levels = 0; // lowest level (e.g. fine)
840  if (__kmp_affinity_gran > affinity_gran_thread) {
841  for (int i = 1; i <= depth_full; ++i) {
842  if (__kmp_affinity_gran <= i) // only count deeper levels
843  break;
844  if (levels[depth_full - i] > 0)
845  __kmp_affinity_gran_levels++;
846  }
847  }
848  if (__kmp_affinity_gran > affinity_gran_package)
849  __kmp_affinity_gran_levels++; // e.g. granularity = group
850  }
851 
852  if (__kmp_affinity_verbose)
853  __kmp_affinity_print_hwloc_tp(retval, nActiveThreads, depth, levels);
854 
855  KMP_CPU_FREE(oldMask);
856  *address2os = retval;
857  return depth;
858 }
859 #endif // KMP_USE_HWLOC
860 
861 // If we don't know how to retrieve the machine's processor topology, or
862 // encounter an error in doing so, this routine is called to form a "flat"
863 // mapping of os thread id's <-> processor id's.
864 static int __kmp_affinity_create_flat_map(AddrUnsPair **address2os,
865  kmp_i18n_id_t *const msg_id) {
866  *address2os = NULL;
867  *msg_id = kmp_i18n_null;
868 
869  // Even if __kmp_affinity_type == affinity_none, this routine might still
870  // called to set __kmp_ncores, as well as
871  // __kmp_nThreadsPerCore, nCoresPerPkg, & nPackages.
872  if (!KMP_AFFINITY_CAPABLE()) {
873  KMP_ASSERT(__kmp_affinity_type == affinity_none);
874  __kmp_ncores = nPackages = __kmp_xproc;
875  __kmp_nThreadsPerCore = nCoresPerPkg = 1;
876  if (__kmp_affinity_verbose) {
877  KMP_INFORM(AffFlatTopology, "KMP_AFFINITY");
878  KMP_INFORM(AvailableOSProc, "KMP_AFFINITY", __kmp_avail_proc);
879  KMP_INFORM(Uniform, "KMP_AFFINITY");
880  KMP_INFORM(Topology, "KMP_AFFINITY", nPackages, nCoresPerPkg,
881  __kmp_nThreadsPerCore, __kmp_ncores);
882  }
883  return 0;
884  }
885 
886  // When affinity is off, this routine will still be called to set
887  // __kmp_ncores, as well as __kmp_nThreadsPerCore, nCoresPerPkg, & nPackages.
888  // Make sure all these vars are set correctly, and return now if affinity is
889  // not enabled.
890  __kmp_ncores = nPackages = __kmp_avail_proc;
891  __kmp_nThreadsPerCore = nCoresPerPkg = 1;
892  if (__kmp_affinity_verbose) {
893  char buf[KMP_AFFIN_MASK_PRINT_LEN];
894  __kmp_affinity_print_mask(buf, KMP_AFFIN_MASK_PRINT_LEN,
895  __kmp_affin_fullMask);
896 
897  KMP_INFORM(AffCapableUseFlat, "KMP_AFFINITY");
898  if (__kmp_affinity_respect_mask) {
899  KMP_INFORM(InitOSProcSetRespect, "KMP_AFFINITY", buf);
900  } else {
901  KMP_INFORM(InitOSProcSetNotRespect, "KMP_AFFINITY", buf);
902  }
903  KMP_INFORM(AvailableOSProc, "KMP_AFFINITY", __kmp_avail_proc);
904  KMP_INFORM(Uniform, "KMP_AFFINITY");
905  KMP_INFORM(Topology, "KMP_AFFINITY", nPackages, nCoresPerPkg,
906  __kmp_nThreadsPerCore, __kmp_ncores);
907  }
908  KMP_DEBUG_ASSERT(__kmp_pu_os_idx == NULL);
909  __kmp_pu_os_idx = (int *)__kmp_allocate(sizeof(int) * __kmp_avail_proc);
910  if (__kmp_affinity_type == affinity_none) {
911  int avail_ct = 0;
912  int i;
913  KMP_CPU_SET_ITERATE(i, __kmp_affin_fullMask) {
914  if (!KMP_CPU_ISSET(i, __kmp_affin_fullMask))
915  continue;
916  __kmp_pu_os_idx[avail_ct++] = i; // suppose indices are flat
917  }
918  return 0;
919  }
920 
921  // Construct the data structure to be returned.
922  *address2os =
923  (AddrUnsPair *)__kmp_allocate(sizeof(**address2os) * __kmp_avail_proc);
924  int avail_ct = 0;
925  int i;
926  KMP_CPU_SET_ITERATE(i, __kmp_affin_fullMask) {
927  // Skip this proc if it is not included in the machine model.
928  if (!KMP_CPU_ISSET(i, __kmp_affin_fullMask)) {
929  continue;
930  }
931  __kmp_pu_os_idx[avail_ct] = i; // suppose indices are flat
932  Address addr(1);
933  addr.labels[0] = i;
934  (*address2os)[avail_ct++] = AddrUnsPair(addr, i);
935  }
936  if (__kmp_affinity_verbose) {
937  KMP_INFORM(OSProcToPackage, "KMP_AFFINITY");
938  }
939 
940  if (__kmp_affinity_gran_levels < 0) {
941  // Only the package level is modeled in the machine topology map,
942  // so the #levels of granularity is either 0 or 1.
943  if (__kmp_affinity_gran > affinity_gran_package) {
944  __kmp_affinity_gran_levels = 1;
945  } else {
946  __kmp_affinity_gran_levels = 0;
947  }
948  }
949  return 1;
950 }
951 
952 #if KMP_GROUP_AFFINITY
953 
954 // If multiple Windows* OS processor groups exist, we can create a 2-level
955 // topology map with the groups at level 0 and the individual procs at level 1.
956 // This facilitates letting the threads float among all procs in a group,
957 // if granularity=group (the default when there are multiple groups).
958 static int __kmp_affinity_create_proc_group_map(AddrUnsPair **address2os,
959  kmp_i18n_id_t *const msg_id) {
960  *address2os = NULL;
961  *msg_id = kmp_i18n_null;
962 
963  // If we aren't affinity capable, then return now.
964  // The flat mapping will be used.
965  if (!KMP_AFFINITY_CAPABLE()) {
966  // FIXME set *msg_id
967  return -1;
968  }
969 
970  // Construct the data structure to be returned.
971  *address2os =
972  (AddrUnsPair *)__kmp_allocate(sizeof(**address2os) * __kmp_avail_proc);
973  KMP_DEBUG_ASSERT(__kmp_pu_os_idx == NULL);
974  __kmp_pu_os_idx = (int *)__kmp_allocate(sizeof(int) * __kmp_avail_proc);
975  int avail_ct = 0;
976  int i;
977  KMP_CPU_SET_ITERATE(i, __kmp_affin_fullMask) {
978  // Skip this proc if it is not included in the machine model.
979  if (!KMP_CPU_ISSET(i, __kmp_affin_fullMask)) {
980  continue;
981  }
982  __kmp_pu_os_idx[avail_ct] = i; // suppose indices are flat
983  Address addr(2);
984  addr.labels[0] = i / (CHAR_BIT * sizeof(DWORD_PTR));
985  addr.labels[1] = i % (CHAR_BIT * sizeof(DWORD_PTR));
986  (*address2os)[avail_ct++] = AddrUnsPair(addr, i);
987 
988  if (__kmp_affinity_verbose) {
989  KMP_INFORM(AffOSProcToGroup, "KMP_AFFINITY", i, addr.labels[0],
990  addr.labels[1]);
991  }
992  }
993 
994  if (__kmp_affinity_gran_levels < 0) {
995  if (__kmp_affinity_gran == affinity_gran_group) {
996  __kmp_affinity_gran_levels = 1;
997  } else if ((__kmp_affinity_gran == affinity_gran_fine) ||
998  (__kmp_affinity_gran == affinity_gran_thread)) {
999  __kmp_affinity_gran_levels = 0;
1000  } else {
1001  const char *gran_str = NULL;
1002  if (__kmp_affinity_gran == affinity_gran_core) {
1003  gran_str = "core";
1004  } else if (__kmp_affinity_gran == affinity_gran_package) {
1005  gran_str = "package";
1006  } else if (__kmp_affinity_gran == affinity_gran_node) {
1007  gran_str = "node";
1008  } else {
1009  KMP_ASSERT(0);
1010  }
1011 
1012  // Warning: can't use affinity granularity \"gran\" with group topology
1013  // method, using "thread"
1014  __kmp_affinity_gran_levels = 0;
1015  }
1016  }
1017  return 2;
1018 }
1019 
1020 #endif /* KMP_GROUP_AFFINITY */
1021 
1022 #if KMP_ARCH_X86 || KMP_ARCH_X86_64
1023 
1024 static int __kmp_cpuid_mask_width(int count) {
1025  int r = 0;
1026 
1027  while ((1 << r) < count)
1028  ++r;
1029  return r;
1030 }
1031 
1032 class apicThreadInfo {
1033 public:
1034  unsigned osId; // param to __kmp_affinity_bind_thread
1035  unsigned apicId; // from cpuid after binding
1036  unsigned maxCoresPerPkg; // ""
1037  unsigned maxThreadsPerPkg; // ""
1038  unsigned pkgId; // inferred from above values
1039  unsigned coreId; // ""
1040  unsigned threadId; // ""
1041 };
1042 
1043 static int __kmp_affinity_cmp_apicThreadInfo_phys_id(const void *a,
1044  const void *b) {
1045  const apicThreadInfo *aa = (const apicThreadInfo *)a;
1046  const apicThreadInfo *bb = (const apicThreadInfo *)b;
1047  if (aa->pkgId < bb->pkgId)
1048  return -1;
1049  if (aa->pkgId > bb->pkgId)
1050  return 1;
1051  if (aa->coreId < bb->coreId)
1052  return -1;
1053  if (aa->coreId > bb->coreId)
1054  return 1;
1055  if (aa->threadId < bb->threadId)
1056  return -1;
1057  if (aa->threadId > bb->threadId)
1058  return 1;
1059  return 0;
1060 }
1061 
1062 // On IA-32 architecture and Intel(R) 64 architecture, we attempt to use
1063 // an algorithm which cycles through the available os threads, setting
1064 // the current thread's affinity mask to that thread, and then retrieves
1065 // the Apic Id for each thread context using the cpuid instruction.
1066 static int __kmp_affinity_create_apicid_map(AddrUnsPair **address2os,
1067  kmp_i18n_id_t *const msg_id) {
1068  kmp_cpuid buf;
1069  *address2os = NULL;
1070  *msg_id = kmp_i18n_null;
1071 
1072  // Check if cpuid leaf 4 is supported.
1073  __kmp_x86_cpuid(0, 0, &buf);
1074  if (buf.eax < 4) {
1075  *msg_id = kmp_i18n_str_NoLeaf4Support;
1076  return -1;
1077  }
1078 
1079  // The algorithm used starts by setting the affinity to each available thread
1080  // and retrieving info from the cpuid instruction, so if we are not capable of
1081  // calling __kmp_get_system_affinity() and _kmp_get_system_affinity(), then we
1082  // need to do something else - use the defaults that we calculated from
1083  // issuing cpuid without binding to each proc.
1084  if (!KMP_AFFINITY_CAPABLE()) {
1085  // Hack to try and infer the machine topology using only the data
1086  // available from cpuid on the current thread, and __kmp_xproc.
1087  KMP_ASSERT(__kmp_affinity_type == affinity_none);
1088 
1089  // Get an upper bound on the number of threads per package using cpuid(1).
1090  // On some OS/chps combinations where HT is supported by the chip but is
1091  // disabled, this value will be 2 on a single core chip. Usually, it will be
1092  // 2 if HT is enabled and 1 if HT is disabled.
1093  __kmp_x86_cpuid(1, 0, &buf);
1094  int maxThreadsPerPkg = (buf.ebx >> 16) & 0xff;
1095  if (maxThreadsPerPkg == 0) {
1096  maxThreadsPerPkg = 1;
1097  }
1098 
1099  // The num cores per pkg comes from cpuid(4). 1 must be added to the encoded
1100  // value.
1101  //
1102  // The author of cpu_count.cpp treated this only an upper bound on the
1103  // number of cores, but I haven't seen any cases where it was greater than
1104  // the actual number of cores, so we will treat it as exact in this block of
1105  // code.
1106  //
1107  // First, we need to check if cpuid(4) is supported on this chip. To see if
1108  // cpuid(n) is supported, issue cpuid(0) and check if eax has the value n or
1109  // greater.
1110  __kmp_x86_cpuid(0, 0, &buf);
1111  if (buf.eax >= 4) {
1112  __kmp_x86_cpuid(4, 0, &buf);
1113  nCoresPerPkg = ((buf.eax >> 26) & 0x3f) + 1;
1114  } else {
1115  nCoresPerPkg = 1;
1116  }
1117 
1118  // There is no way to reliably tell if HT is enabled without issuing the
1119  // cpuid instruction from every thread, can correlating the cpuid info, so
1120  // if the machine is not affinity capable, we assume that HT is off. We have
1121  // seen quite a few machines where maxThreadsPerPkg is 2, yet the machine
1122  // does not support HT.
1123  //
1124  // - Older OSes are usually found on machines with older chips, which do not
1125  // support HT.
1126  // - The performance penalty for mistakenly identifying a machine as HT when
1127  // it isn't (which results in blocktime being incorrectly set to 0) is
1128  // greater than the penalty when for mistakenly identifying a machine as
1129  // being 1 thread/core when it is really HT enabled (which results in
1130  // blocktime being incorrectly set to a positive value).
1131  __kmp_ncores = __kmp_xproc;
1132  nPackages = (__kmp_xproc + nCoresPerPkg - 1) / nCoresPerPkg;
1133  __kmp_nThreadsPerCore = 1;
1134  if (__kmp_affinity_verbose) {
1135  KMP_INFORM(AffNotCapableUseLocCpuid, "KMP_AFFINITY");
1136  KMP_INFORM(AvailableOSProc, "KMP_AFFINITY", __kmp_avail_proc);
1137  if (__kmp_affinity_uniform_topology()) {
1138  KMP_INFORM(Uniform, "KMP_AFFINITY");
1139  } else {
1140  KMP_INFORM(NonUniform, "KMP_AFFINITY");
1141  }
1142  KMP_INFORM(Topology, "KMP_AFFINITY", nPackages, nCoresPerPkg,
1143  __kmp_nThreadsPerCore, __kmp_ncores);
1144  }
1145  return 0;
1146  }
1147 
1148  // From here on, we can assume that it is safe to call
1149  // __kmp_get_system_affinity() and __kmp_set_system_affinity(), even if
1150  // __kmp_affinity_type = affinity_none.
1151 
1152  // Save the affinity mask for the current thread.
1153  kmp_affin_mask_t *oldMask;
1154  KMP_CPU_ALLOC(oldMask);
1155  KMP_ASSERT(oldMask != NULL);
1156  __kmp_get_system_affinity(oldMask, TRUE);
1157 
1158  // Run through each of the available contexts, binding the current thread
1159  // to it, and obtaining the pertinent information using the cpuid instr.
1160  //
1161  // The relevant information is:
1162  // - Apic Id: Bits 24:31 of ebx after issuing cpuid(1) - each thread context
1163  // has a uniqie Apic Id, which is of the form pkg# : core# : thread#.
1164  // - Max Threads Per Pkg: Bits 16:23 of ebx after issuing cpuid(1). The value
1165  // of this field determines the width of the core# + thread# fields in the
1166  // Apic Id. It is also an upper bound on the number of threads per
1167  // package, but it has been verified that situations happen were it is not
1168  // exact. In particular, on certain OS/chip combinations where Intel(R)
1169  // Hyper-Threading Technology is supported by the chip but has been
1170  // disabled, the value of this field will be 2 (for a single core chip).
1171  // On other OS/chip combinations supporting Intel(R) Hyper-Threading
1172  // Technology, the value of this field will be 1 when Intel(R)
1173  // Hyper-Threading Technology is disabled and 2 when it is enabled.
1174  // - Max Cores Per Pkg: Bits 26:31 of eax after issuing cpuid(4). The value
1175  // of this field (+1) determines the width of the core# field in the Apic
1176  // Id. The comments in "cpucount.cpp" say that this value is an upper
1177  // bound, but the IA-32 architecture manual says that it is exactly the
1178  // number of cores per package, and I haven't seen any case where it
1179  // wasn't.
1180  //
1181  // From this information, deduce the package Id, core Id, and thread Id,
1182  // and set the corresponding fields in the apicThreadInfo struct.
1183  unsigned i;
1184  apicThreadInfo *threadInfo = (apicThreadInfo *)__kmp_allocate(
1185  __kmp_avail_proc * sizeof(apicThreadInfo));
1186  unsigned nApics = 0;
1187  KMP_CPU_SET_ITERATE(i, __kmp_affin_fullMask) {
1188  // Skip this proc if it is not included in the machine model.
1189  if (!KMP_CPU_ISSET(i, __kmp_affin_fullMask)) {
1190  continue;
1191  }
1192  KMP_DEBUG_ASSERT((int)nApics < __kmp_avail_proc);
1193 
1194  __kmp_affinity_dispatch->bind_thread(i);
1195  threadInfo[nApics].osId = i;
1196 
1197  // The apic id and max threads per pkg come from cpuid(1).
1198  __kmp_x86_cpuid(1, 0, &buf);
1199  if (((buf.edx >> 9) & 1) == 0) {
1200  __kmp_set_system_affinity(oldMask, TRUE);
1201  __kmp_free(threadInfo);
1202  KMP_CPU_FREE(oldMask);
1203  *msg_id = kmp_i18n_str_ApicNotPresent;
1204  return -1;
1205  }
1206  threadInfo[nApics].apicId = (buf.ebx >> 24) & 0xff;
1207  threadInfo[nApics].maxThreadsPerPkg = (buf.ebx >> 16) & 0xff;
1208  if (threadInfo[nApics].maxThreadsPerPkg == 0) {
1209  threadInfo[nApics].maxThreadsPerPkg = 1;
1210  }
1211 
1212  // Max cores per pkg comes from cpuid(4). 1 must be added to the encoded
1213  // value.
1214  //
1215  // First, we need to check if cpuid(4) is supported on this chip. To see if
1216  // cpuid(n) is supported, issue cpuid(0) and check if eax has the value n
1217  // or greater.
1218  __kmp_x86_cpuid(0, 0, &buf);
1219  if (buf.eax >= 4) {
1220  __kmp_x86_cpuid(4, 0, &buf);
1221  threadInfo[nApics].maxCoresPerPkg = ((buf.eax >> 26) & 0x3f) + 1;
1222  } else {
1223  threadInfo[nApics].maxCoresPerPkg = 1;
1224  }
1225 
1226  // Infer the pkgId / coreId / threadId using only the info obtained locally.
1227  int widthCT = __kmp_cpuid_mask_width(threadInfo[nApics].maxThreadsPerPkg);
1228  threadInfo[nApics].pkgId = threadInfo[nApics].apicId >> widthCT;
1229 
1230  int widthC = __kmp_cpuid_mask_width(threadInfo[nApics].maxCoresPerPkg);
1231  int widthT = widthCT - widthC;
1232  if (widthT < 0) {
1233  // I've never seen this one happen, but I suppose it could, if the cpuid
1234  // instruction on a chip was really screwed up. Make sure to restore the
1235  // affinity mask before the tail call.
1236  __kmp_set_system_affinity(oldMask, TRUE);
1237  __kmp_free(threadInfo);
1238  KMP_CPU_FREE(oldMask);
1239  *msg_id = kmp_i18n_str_InvalidCpuidInfo;
1240  return -1;
1241  }
1242 
1243  int maskC = (1 << widthC) - 1;
1244  threadInfo[nApics].coreId = (threadInfo[nApics].apicId >> widthT) & maskC;
1245 
1246  int maskT = (1 << widthT) - 1;
1247  threadInfo[nApics].threadId = threadInfo[nApics].apicId & maskT;
1248 
1249  nApics++;
1250  }
1251 
1252  // We've collected all the info we need.
1253  // Restore the old affinity mask for this thread.
1254  __kmp_set_system_affinity(oldMask, TRUE);
1255 
1256  // If there's only one thread context to bind to, form an Address object
1257  // with depth 1 and return immediately (or, if affinity is off, set
1258  // address2os to NULL and return).
1259  //
1260  // If it is configured to omit the package level when there is only a single
1261  // package, the logic at the end of this routine won't work if there is only
1262  // a single thread - it would try to form an Address object with depth 0.
1263  KMP_ASSERT(nApics > 0);
1264  if (nApics == 1) {
1265  __kmp_ncores = nPackages = 1;
1266  __kmp_nThreadsPerCore = nCoresPerPkg = 1;
1267  if (__kmp_affinity_verbose) {
1268  char buf[KMP_AFFIN_MASK_PRINT_LEN];
1269  __kmp_affinity_print_mask(buf, KMP_AFFIN_MASK_PRINT_LEN, oldMask);
1270 
1271  KMP_INFORM(AffUseGlobCpuid, "KMP_AFFINITY");
1272  if (__kmp_affinity_respect_mask) {
1273  KMP_INFORM(InitOSProcSetRespect, "KMP_AFFINITY", buf);
1274  } else {
1275  KMP_INFORM(InitOSProcSetNotRespect, "KMP_AFFINITY", buf);
1276  }
1277  KMP_INFORM(AvailableOSProc, "KMP_AFFINITY", __kmp_avail_proc);
1278  KMP_INFORM(Uniform, "KMP_AFFINITY");
1279  KMP_INFORM(Topology, "KMP_AFFINITY", nPackages, nCoresPerPkg,
1280  __kmp_nThreadsPerCore, __kmp_ncores);
1281  }
1282 
1283  if (__kmp_affinity_type == affinity_none) {
1284  __kmp_free(threadInfo);
1285  KMP_CPU_FREE(oldMask);
1286  return 0;
1287  }
1288 
1289  *address2os = (AddrUnsPair *)__kmp_allocate(sizeof(AddrUnsPair));
1290  Address addr(1);
1291  addr.labels[0] = threadInfo[0].pkgId;
1292  (*address2os)[0] = AddrUnsPair(addr, threadInfo[0].osId);
1293 
1294  if (__kmp_affinity_gran_levels < 0) {
1295  __kmp_affinity_gran_levels = 0;
1296  }
1297 
1298  if (__kmp_affinity_verbose) {
1299  __kmp_affinity_print_topology(*address2os, 1, 1, 0, -1, -1);
1300  }
1301 
1302  __kmp_free(threadInfo);
1303  KMP_CPU_FREE(oldMask);
1304  return 1;
1305  }
1306 
1307  // Sort the threadInfo table by physical Id.
1308  qsort(threadInfo, nApics, sizeof(*threadInfo),
1309  __kmp_affinity_cmp_apicThreadInfo_phys_id);
1310 
1311  // The table is now sorted by pkgId / coreId / threadId, but we really don't
1312  // know the radix of any of the fields. pkgId's may be sparsely assigned among
1313  // the chips on a system. Although coreId's are usually assigned
1314  // [0 .. coresPerPkg-1] and threadId's are usually assigned
1315  // [0..threadsPerCore-1], we don't want to make any such assumptions.
1316  //
1317  // For that matter, we don't know what coresPerPkg and threadsPerCore (or the
1318  // total # packages) are at this point - we want to determine that now. We
1319  // only have an upper bound on the first two figures.
1320  //
1321  // We also perform a consistency check at this point: the values returned by
1322  // the cpuid instruction for any thread bound to a given package had better
1323  // return the same info for maxThreadsPerPkg and maxCoresPerPkg.
1324  nPackages = 1;
1325  nCoresPerPkg = 1;
1326  __kmp_nThreadsPerCore = 1;
1327  unsigned nCores = 1;
1328 
1329  unsigned pkgCt = 1; // to determine radii
1330  unsigned lastPkgId = threadInfo[0].pkgId;
1331  unsigned coreCt = 1;
1332  unsigned lastCoreId = threadInfo[0].coreId;
1333  unsigned threadCt = 1;
1334  unsigned lastThreadId = threadInfo[0].threadId;
1335 
1336  // intra-pkg consist checks
1337  unsigned prevMaxCoresPerPkg = threadInfo[0].maxCoresPerPkg;
1338  unsigned prevMaxThreadsPerPkg = threadInfo[0].maxThreadsPerPkg;
1339 
1340  for (i = 1; i < nApics; i++) {
1341  if (threadInfo[i].pkgId != lastPkgId) {
1342  nCores++;
1343  pkgCt++;
1344  lastPkgId = threadInfo[i].pkgId;
1345  if ((int)coreCt > nCoresPerPkg)
1346  nCoresPerPkg = coreCt;
1347  coreCt = 1;
1348  lastCoreId = threadInfo[i].coreId;
1349  if ((int)threadCt > __kmp_nThreadsPerCore)
1350  __kmp_nThreadsPerCore = threadCt;
1351  threadCt = 1;
1352  lastThreadId = threadInfo[i].threadId;
1353 
1354  // This is a different package, so go on to the next iteration without
1355  // doing any consistency checks. Reset the consistency check vars, though.
1356  prevMaxCoresPerPkg = threadInfo[i].maxCoresPerPkg;
1357  prevMaxThreadsPerPkg = threadInfo[i].maxThreadsPerPkg;
1358  continue;
1359  }
1360 
1361  if (threadInfo[i].coreId != lastCoreId) {
1362  nCores++;
1363  coreCt++;
1364  lastCoreId = threadInfo[i].coreId;
1365  if ((int)threadCt > __kmp_nThreadsPerCore)
1366  __kmp_nThreadsPerCore = threadCt;
1367  threadCt = 1;
1368  lastThreadId = threadInfo[i].threadId;
1369  } else if (threadInfo[i].threadId != lastThreadId) {
1370  threadCt++;
1371  lastThreadId = threadInfo[i].threadId;
1372  } else {
1373  __kmp_free(threadInfo);
1374  KMP_CPU_FREE(oldMask);
1375  *msg_id = kmp_i18n_str_LegacyApicIDsNotUnique;
1376  return -1;
1377  }
1378 
1379  // Check to make certain that the maxCoresPerPkg and maxThreadsPerPkg
1380  // fields agree between all the threads bounds to a given package.
1381  if ((prevMaxCoresPerPkg != threadInfo[i].maxCoresPerPkg) ||
1382  (prevMaxThreadsPerPkg != threadInfo[i].maxThreadsPerPkg)) {
1383  __kmp_free(threadInfo);
1384  KMP_CPU_FREE(oldMask);
1385  *msg_id = kmp_i18n_str_InconsistentCpuidInfo;
1386  return -1;
1387  }
1388  }
1389  nPackages = pkgCt;
1390  if ((int)coreCt > nCoresPerPkg)
1391  nCoresPerPkg = coreCt;
1392  if ((int)threadCt > __kmp_nThreadsPerCore)
1393  __kmp_nThreadsPerCore = threadCt;
1394 
1395  // When affinity is off, this routine will still be called to set
1396  // __kmp_ncores, as well as __kmp_nThreadsPerCore, nCoresPerPkg, & nPackages.
1397  // Make sure all these vars are set correctly, and return now if affinity is
1398  // not enabled.
1399  __kmp_ncores = nCores;
1400  if (__kmp_affinity_verbose) {
1401  char buf[KMP_AFFIN_MASK_PRINT_LEN];
1402  __kmp_affinity_print_mask(buf, KMP_AFFIN_MASK_PRINT_LEN, oldMask);
1403 
1404  KMP_INFORM(AffUseGlobCpuid, "KMP_AFFINITY");
1405  if (__kmp_affinity_respect_mask) {
1406  KMP_INFORM(InitOSProcSetRespect, "KMP_AFFINITY", buf);
1407  } else {
1408  KMP_INFORM(InitOSProcSetNotRespect, "KMP_AFFINITY", buf);
1409  }
1410  KMP_INFORM(AvailableOSProc, "KMP_AFFINITY", __kmp_avail_proc);
1411  if (__kmp_affinity_uniform_topology()) {
1412  KMP_INFORM(Uniform, "KMP_AFFINITY");
1413  } else {
1414  KMP_INFORM(NonUniform, "KMP_AFFINITY");
1415  }
1416  KMP_INFORM(Topology, "KMP_AFFINITY", nPackages, nCoresPerPkg,
1417  __kmp_nThreadsPerCore, __kmp_ncores);
1418  }
1419  KMP_DEBUG_ASSERT(__kmp_pu_os_idx == NULL);
1420  KMP_DEBUG_ASSERT(nApics == (unsigned)__kmp_avail_proc);
1421  __kmp_pu_os_idx = (int *)__kmp_allocate(sizeof(int) * __kmp_avail_proc);
1422  for (i = 0; i < nApics; ++i) {
1423  __kmp_pu_os_idx[i] = threadInfo[i].osId;
1424  }
1425  if (__kmp_affinity_type == affinity_none) {
1426  __kmp_free(threadInfo);
1427  KMP_CPU_FREE(oldMask);
1428  return 0;
1429  }
1430 
1431  // Now that we've determined the number of packages, the number of cores per
1432  // package, and the number of threads per core, we can construct the data
1433  // structure that is to be returned.
1434  int pkgLevel = 0;
1435  int coreLevel = (nCoresPerPkg <= 1) ? -1 : 1;
1436  int threadLevel =
1437  (__kmp_nThreadsPerCore <= 1) ? -1 : ((coreLevel >= 0) ? 2 : 1);
1438  unsigned depth = (pkgLevel >= 0) + (coreLevel >= 0) + (threadLevel >= 0);
1439 
1440  KMP_ASSERT(depth > 0);
1441  *address2os = (AddrUnsPair *)__kmp_allocate(sizeof(AddrUnsPair) * nApics);
1442 
1443  for (i = 0; i < nApics; ++i) {
1444  Address addr(depth);
1445  unsigned os = threadInfo[i].osId;
1446  int d = 0;
1447 
1448  if (pkgLevel >= 0) {
1449  addr.labels[d++] = threadInfo[i].pkgId;
1450  }
1451  if (coreLevel >= 0) {
1452  addr.labels[d++] = threadInfo[i].coreId;
1453  }
1454  if (threadLevel >= 0) {
1455  addr.labels[d++] = threadInfo[i].threadId;
1456  }
1457  (*address2os)[i] = AddrUnsPair(addr, os);
1458  }
1459 
1460  if (__kmp_affinity_gran_levels < 0) {
1461  // Set the granularity level based on what levels are modeled in the machine
1462  // topology map.
1463  __kmp_affinity_gran_levels = 0;
1464  if ((threadLevel >= 0) && (__kmp_affinity_gran > affinity_gran_thread)) {
1465  __kmp_affinity_gran_levels++;
1466  }
1467  if ((coreLevel >= 0) && (__kmp_affinity_gran > affinity_gran_core)) {
1468  __kmp_affinity_gran_levels++;
1469  }
1470  if ((pkgLevel >= 0) && (__kmp_affinity_gran > affinity_gran_package)) {
1471  __kmp_affinity_gran_levels++;
1472  }
1473  }
1474 
1475  if (__kmp_affinity_verbose) {
1476  __kmp_affinity_print_topology(*address2os, nApics, depth, pkgLevel,
1477  coreLevel, threadLevel);
1478  }
1479 
1480  __kmp_free(threadInfo);
1481  KMP_CPU_FREE(oldMask);
1482  return depth;
1483 }
1484 
1485 // Intel(R) microarchitecture code name Nehalem, Dunnington and later
1486 // architectures support a newer interface for specifying the x2APIC Ids,
1487 // based on cpuid leaf 11.
1488 static int __kmp_affinity_create_x2apicid_map(AddrUnsPair **address2os,
1489  kmp_i18n_id_t *const msg_id) {
1490  kmp_cpuid buf;
1491  *address2os = NULL;
1492  *msg_id = kmp_i18n_null;
1493 
1494  // Check to see if cpuid leaf 11 is supported.
1495  __kmp_x86_cpuid(0, 0, &buf);
1496  if (buf.eax < 11) {
1497  *msg_id = kmp_i18n_str_NoLeaf11Support;
1498  return -1;
1499  }
1500  __kmp_x86_cpuid(11, 0, &buf);
1501  if (buf.ebx == 0) {
1502  *msg_id = kmp_i18n_str_NoLeaf11Support;
1503  return -1;
1504  }
1505 
1506  // Find the number of levels in the machine topology. While we're at it, get
1507  // the default values for __kmp_nThreadsPerCore & nCoresPerPkg. We will try to
1508  // get more accurate values later by explicitly counting them, but get
1509  // reasonable defaults now, in case we return early.
1510  int level;
1511  int threadLevel = -1;
1512  int coreLevel = -1;
1513  int pkgLevel = -1;
1514  __kmp_nThreadsPerCore = nCoresPerPkg = nPackages = 1;
1515 
1516  for (level = 0;; level++) {
1517  if (level > 31) {
1518  // FIXME: Hack for DPD200163180
1519  //
1520  // If level is big then something went wrong -> exiting
1521  //
1522  // There could actually be 32 valid levels in the machine topology, but so
1523  // far, the only machine we have seen which does not exit this loop before
1524  // iteration 32 has fubar x2APIC settings.
1525  //
1526  // For now, just reject this case based upon loop trip count.
1527  *msg_id = kmp_i18n_str_InvalidCpuidInfo;
1528  return -1;
1529  }
1530  __kmp_x86_cpuid(11, level, &buf);
1531  if (buf.ebx == 0) {
1532  if (pkgLevel < 0) {
1533  // Will infer nPackages from __kmp_xproc
1534  pkgLevel = level;
1535  level++;
1536  }
1537  break;
1538  }
1539  int kind = (buf.ecx >> 8) & 0xff;
1540  if (kind == 1) {
1541  // SMT level
1542  threadLevel = level;
1543  coreLevel = -1;
1544  pkgLevel = -1;
1545  __kmp_nThreadsPerCore = buf.ebx & 0xffff;
1546  if (__kmp_nThreadsPerCore == 0) {
1547  *msg_id = kmp_i18n_str_InvalidCpuidInfo;
1548  return -1;
1549  }
1550  } else if (kind == 2) {
1551  // core level
1552  coreLevel = level;
1553  pkgLevel = -1;
1554  nCoresPerPkg = buf.ebx & 0xffff;
1555  if (nCoresPerPkg == 0) {
1556  *msg_id = kmp_i18n_str_InvalidCpuidInfo;
1557  return -1;
1558  }
1559  } else {
1560  if (level <= 0) {
1561  *msg_id = kmp_i18n_str_InvalidCpuidInfo;
1562  return -1;
1563  }
1564  if (pkgLevel >= 0) {
1565  continue;
1566  }
1567  pkgLevel = level;
1568  nPackages = buf.ebx & 0xffff;
1569  if (nPackages == 0) {
1570  *msg_id = kmp_i18n_str_InvalidCpuidInfo;
1571  return -1;
1572  }
1573  }
1574  }
1575  int depth = level;
1576 
1577  // In the above loop, "level" was counted from the finest level (usually
1578  // thread) to the coarsest. The caller expects that we will place the labels
1579  // in (*address2os)[].first.labels[] in the inverse order, so we need to
1580  // invert the vars saying which level means what.
1581  if (threadLevel >= 0) {
1582  threadLevel = depth - threadLevel - 1;
1583  }
1584  if (coreLevel >= 0) {
1585  coreLevel = depth - coreLevel - 1;
1586  }
1587  KMP_DEBUG_ASSERT(pkgLevel >= 0);
1588  pkgLevel = depth - pkgLevel - 1;
1589 
1590  // The algorithm used starts by setting the affinity to each available thread
1591  // and retrieving info from the cpuid instruction, so if we are not capable of
1592  // calling __kmp_get_system_affinity() and _kmp_get_system_affinity(), then we
1593  // need to do something else - use the defaults that we calculated from
1594  // issuing cpuid without binding to each proc.
1595  if (!KMP_AFFINITY_CAPABLE()) {
1596  // Hack to try and infer the machine topology using only the data
1597  // available from cpuid on the current thread, and __kmp_xproc.
1598  KMP_ASSERT(__kmp_affinity_type == affinity_none);
1599 
1600  __kmp_ncores = __kmp_xproc / __kmp_nThreadsPerCore;
1601  nPackages = (__kmp_xproc + nCoresPerPkg - 1) / nCoresPerPkg;
1602  if (__kmp_affinity_verbose) {
1603  KMP_INFORM(AffNotCapableUseLocCpuidL11, "KMP_AFFINITY");
1604  KMP_INFORM(AvailableOSProc, "KMP_AFFINITY", __kmp_avail_proc);
1605  if (__kmp_affinity_uniform_topology()) {
1606  KMP_INFORM(Uniform, "KMP_AFFINITY");
1607  } else {
1608  KMP_INFORM(NonUniform, "KMP_AFFINITY");
1609  }
1610  KMP_INFORM(Topology, "KMP_AFFINITY", nPackages, nCoresPerPkg,
1611  __kmp_nThreadsPerCore, __kmp_ncores);
1612  }
1613  return 0;
1614  }
1615 
1616  // From here on, we can assume that it is safe to call
1617  // __kmp_get_system_affinity() and __kmp_set_system_affinity(), even if
1618  // __kmp_affinity_type = affinity_none.
1619 
1620  // Save the affinity mask for the current thread.
1621  kmp_affin_mask_t *oldMask;
1622  KMP_CPU_ALLOC(oldMask);
1623  __kmp_get_system_affinity(oldMask, TRUE);
1624 
1625  // Allocate the data structure to be returned.
1626  AddrUnsPair *retval =
1627  (AddrUnsPair *)__kmp_allocate(sizeof(AddrUnsPair) * __kmp_avail_proc);
1628 
1629  // Run through each of the available contexts, binding the current thread
1630  // to it, and obtaining the pertinent information using the cpuid instr.
1631  unsigned int proc;
1632  int nApics = 0;
1633  KMP_CPU_SET_ITERATE(proc, __kmp_affin_fullMask) {
1634  // Skip this proc if it is not included in the machine model.
1635  if (!KMP_CPU_ISSET(proc, __kmp_affin_fullMask)) {
1636  continue;
1637  }
1638  KMP_DEBUG_ASSERT(nApics < __kmp_avail_proc);
1639 
1640  __kmp_affinity_dispatch->bind_thread(proc);
1641 
1642  // Extract labels for each level in the machine topology map from Apic ID.
1643  Address addr(depth);
1644  int prev_shift = 0;
1645 
1646  for (level = 0; level < depth; level++) {
1647  __kmp_x86_cpuid(11, level, &buf);
1648  unsigned apicId = buf.edx;
1649  if (buf.ebx == 0) {
1650  if (level != depth - 1) {
1651  KMP_CPU_FREE(oldMask);
1652  *msg_id = kmp_i18n_str_InconsistentCpuidInfo;
1653  return -1;
1654  }
1655  addr.labels[depth - level - 1] = apicId >> prev_shift;
1656  level++;
1657  break;
1658  }
1659  int shift = buf.eax & 0x1f;
1660  int mask = (1 << shift) - 1;
1661  addr.labels[depth - level - 1] = (apicId & mask) >> prev_shift;
1662  prev_shift = shift;
1663  }
1664  if (level != depth) {
1665  KMP_CPU_FREE(oldMask);
1666  *msg_id = kmp_i18n_str_InconsistentCpuidInfo;
1667  return -1;
1668  }
1669 
1670  retval[nApics] = AddrUnsPair(addr, proc);
1671  nApics++;
1672  }
1673 
1674  // We've collected all the info we need.
1675  // Restore the old affinity mask for this thread.
1676  __kmp_set_system_affinity(oldMask, TRUE);
1677 
1678  // If there's only one thread context to bind to, return now.
1679  KMP_ASSERT(nApics > 0);
1680  if (nApics == 1) {
1681  __kmp_ncores = nPackages = 1;
1682  __kmp_nThreadsPerCore = nCoresPerPkg = 1;
1683  if (__kmp_affinity_verbose) {
1684  char buf[KMP_AFFIN_MASK_PRINT_LEN];
1685  __kmp_affinity_print_mask(buf, KMP_AFFIN_MASK_PRINT_LEN, oldMask);
1686 
1687  KMP_INFORM(AffUseGlobCpuidL11, "KMP_AFFINITY");
1688  if (__kmp_affinity_respect_mask) {
1689  KMP_INFORM(InitOSProcSetRespect, "KMP_AFFINITY", buf);
1690  } else {
1691  KMP_INFORM(InitOSProcSetNotRespect, "KMP_AFFINITY", buf);
1692  }
1693  KMP_INFORM(AvailableOSProc, "KMP_AFFINITY", __kmp_avail_proc);
1694  KMP_INFORM(Uniform, "KMP_AFFINITY");
1695  KMP_INFORM(Topology, "KMP_AFFINITY", nPackages, nCoresPerPkg,
1696  __kmp_nThreadsPerCore, __kmp_ncores);
1697  }
1698 
1699  if (__kmp_affinity_type == affinity_none) {
1700  __kmp_free(retval);
1701  KMP_CPU_FREE(oldMask);
1702  return 0;
1703  }
1704 
1705  // Form an Address object which only includes the package level.
1706  Address addr(1);
1707  addr.labels[0] = retval[0].first.labels[pkgLevel];
1708  retval[0].first = addr;
1709 
1710  if (__kmp_affinity_gran_levels < 0) {
1711  __kmp_affinity_gran_levels = 0;
1712  }
1713 
1714  if (__kmp_affinity_verbose) {
1715  __kmp_affinity_print_topology(retval, 1, 1, 0, -1, -1);
1716  }
1717 
1718  *address2os = retval;
1719  KMP_CPU_FREE(oldMask);
1720  return 1;
1721  }
1722 
1723  // Sort the table by physical Id.
1724  qsort(retval, nApics, sizeof(*retval), __kmp_affinity_cmp_Address_labels);
1725 
1726  // Find the radix at each of the levels.
1727  unsigned *totals = (unsigned *)__kmp_allocate(depth * sizeof(unsigned));
1728  unsigned *counts = (unsigned *)__kmp_allocate(depth * sizeof(unsigned));
1729  unsigned *maxCt = (unsigned *)__kmp_allocate(depth * sizeof(unsigned));
1730  unsigned *last = (unsigned *)__kmp_allocate(depth * sizeof(unsigned));
1731  for (level = 0; level < depth; level++) {
1732  totals[level] = 1;
1733  maxCt[level] = 1;
1734  counts[level] = 1;
1735  last[level] = retval[0].first.labels[level];
1736  }
1737 
1738  // From here on, the iteration variable "level" runs from the finest level to
1739  // the coarsest, i.e. we iterate forward through
1740  // (*address2os)[].first.labels[] - in the previous loops, we iterated
1741  // backwards.
1742  for (proc = 1; (int)proc < nApics; proc++) {
1743  int level;
1744  for (level = 0; level < depth; level++) {
1745  if (retval[proc].first.labels[level] != last[level]) {
1746  int j;
1747  for (j = level + 1; j < depth; j++) {
1748  totals[j]++;
1749  counts[j] = 1;
1750  // The line below causes printing incorrect topology information in
1751  // case the max value for some level (maxCt[level]) is encountered
1752  // earlier than some less value while going through the array. For
1753  // example, let pkg0 has 4 cores and pkg1 has 2 cores. Then
1754  // maxCt[1] == 2
1755  // whereas it must be 4.
1756  // TODO!!! Check if it can be commented safely
1757  // maxCt[j] = 1;
1758  last[j] = retval[proc].first.labels[j];
1759  }
1760  totals[level]++;
1761  counts[level]++;
1762  if (counts[level] > maxCt[level]) {
1763  maxCt[level] = counts[level];
1764  }
1765  last[level] = retval[proc].first.labels[level];
1766  break;
1767  } else if (level == depth - 1) {
1768  __kmp_free(last);
1769  __kmp_free(maxCt);
1770  __kmp_free(counts);
1771  __kmp_free(totals);
1772  __kmp_free(retval);
1773  KMP_CPU_FREE(oldMask);
1774  *msg_id = kmp_i18n_str_x2ApicIDsNotUnique;
1775  return -1;
1776  }
1777  }
1778  }
1779 
1780  // When affinity is off, this routine will still be called to set
1781  // __kmp_ncores, as well as __kmp_nThreadsPerCore, nCoresPerPkg, & nPackages.
1782  // Make sure all these vars are set correctly, and return if affinity is not
1783  // enabled.
1784  if (threadLevel >= 0) {
1785  __kmp_nThreadsPerCore = maxCt[threadLevel];
1786  } else {
1787  __kmp_nThreadsPerCore = 1;
1788  }
1789  nPackages = totals[pkgLevel];
1790 
1791  if (coreLevel >= 0) {
1792  __kmp_ncores = totals[coreLevel];
1793  nCoresPerPkg = maxCt[coreLevel];
1794  } else {
1795  __kmp_ncores = nPackages;
1796  nCoresPerPkg = 1;
1797  }
1798 
1799  // Check to see if the machine topology is uniform
1800  unsigned prod = maxCt[0];
1801  for (level = 1; level < depth; level++) {
1802  prod *= maxCt[level];
1803  }
1804  bool uniform = (prod == totals[level - 1]);
1805 
1806  // Print the machine topology summary.
1807  if (__kmp_affinity_verbose) {
1808  char mask[KMP_AFFIN_MASK_PRINT_LEN];
1809  __kmp_affinity_print_mask(mask, KMP_AFFIN_MASK_PRINT_LEN, oldMask);
1810 
1811  KMP_INFORM(AffUseGlobCpuidL11, "KMP_AFFINITY");
1812  if (__kmp_affinity_respect_mask) {
1813  KMP_INFORM(InitOSProcSetRespect, "KMP_AFFINITY", mask);
1814  } else {
1815  KMP_INFORM(InitOSProcSetNotRespect, "KMP_AFFINITY", mask);
1816  }
1817  KMP_INFORM(AvailableOSProc, "KMP_AFFINITY", __kmp_avail_proc);
1818  if (uniform) {
1819  KMP_INFORM(Uniform, "KMP_AFFINITY");
1820  } else {
1821  KMP_INFORM(NonUniform, "KMP_AFFINITY");
1822  }
1823 
1824  kmp_str_buf_t buf;
1825  __kmp_str_buf_init(&buf);
1826 
1827  __kmp_str_buf_print(&buf, "%d", totals[0]);
1828  for (level = 1; level <= pkgLevel; level++) {
1829  __kmp_str_buf_print(&buf, " x %d", maxCt[level]);
1830  }
1831  KMP_INFORM(TopologyExtra, "KMP_AFFINITY", buf.str, nCoresPerPkg,
1832  __kmp_nThreadsPerCore, __kmp_ncores);
1833 
1834  __kmp_str_buf_free(&buf);
1835  }
1836  KMP_DEBUG_ASSERT(__kmp_pu_os_idx == NULL);
1837  KMP_DEBUG_ASSERT(nApics == __kmp_avail_proc);
1838  __kmp_pu_os_idx = (int *)__kmp_allocate(sizeof(int) * __kmp_avail_proc);
1839  for (proc = 0; (int)proc < nApics; ++proc) {
1840  __kmp_pu_os_idx[proc] = retval[proc].second;
1841  }
1842  if (__kmp_affinity_type == affinity_none) {
1843  __kmp_free(last);
1844  __kmp_free(maxCt);
1845  __kmp_free(counts);
1846  __kmp_free(totals);
1847  __kmp_free(retval);
1848  KMP_CPU_FREE(oldMask);
1849  return 0;
1850  }
1851 
1852  // Find any levels with radix 1, and remove them from the map
1853  // (except for the package level).
1854  int new_depth = 0;
1855  for (level = 0; level < depth; level++) {
1856  if ((maxCt[level] == 1) && (level != pkgLevel)) {
1857  continue;
1858  }
1859  new_depth++;
1860  }
1861 
1862  // If we are removing any levels, allocate a new vector to return,
1863  // and copy the relevant information to it.
1864  if (new_depth != depth) {
1865  AddrUnsPair *new_retval =
1866  (AddrUnsPair *)__kmp_allocate(sizeof(AddrUnsPair) * nApics);
1867  for (proc = 0; (int)proc < nApics; proc++) {
1868  Address addr(new_depth);
1869  new_retval[proc] = AddrUnsPair(addr, retval[proc].second);
1870  }
1871  int new_level = 0;
1872  int newPkgLevel = -1;
1873  int newCoreLevel = -1;
1874  int newThreadLevel = -1;
1875  for (level = 0; level < depth; level++) {
1876  if ((maxCt[level] == 1) && (level != pkgLevel)) {
1877  // Remove this level. Never remove the package level
1878  continue;
1879  }
1880  if (level == pkgLevel) {
1881  newPkgLevel = new_level;
1882  }
1883  if (level == coreLevel) {
1884  newCoreLevel = new_level;
1885  }
1886  if (level == threadLevel) {
1887  newThreadLevel = new_level;
1888  }
1889  for (proc = 0; (int)proc < nApics; proc++) {
1890  new_retval[proc].first.labels[new_level] =
1891  retval[proc].first.labels[level];
1892  }
1893  new_level++;
1894  }
1895 
1896  __kmp_free(retval);
1897  retval = new_retval;
1898  depth = new_depth;
1899  pkgLevel = newPkgLevel;
1900  coreLevel = newCoreLevel;
1901  threadLevel = newThreadLevel;
1902  }
1903 
1904  if (__kmp_affinity_gran_levels < 0) {
1905  // Set the granularity level based on what levels are modeled
1906  // in the machine topology map.
1907  __kmp_affinity_gran_levels = 0;
1908  if ((threadLevel >= 0) && (__kmp_affinity_gran > affinity_gran_thread)) {
1909  __kmp_affinity_gran_levels++;
1910  }
1911  if ((coreLevel >= 0) && (__kmp_affinity_gran > affinity_gran_core)) {
1912  __kmp_affinity_gran_levels++;
1913  }
1914  if (__kmp_affinity_gran > affinity_gran_package) {
1915  __kmp_affinity_gran_levels++;
1916  }
1917  }
1918 
1919  if (__kmp_affinity_verbose) {
1920  __kmp_affinity_print_topology(retval, nApics, depth, pkgLevel, coreLevel,
1921  threadLevel);
1922  }
1923 
1924  __kmp_free(last);
1925  __kmp_free(maxCt);
1926  __kmp_free(counts);
1927  __kmp_free(totals);
1928  KMP_CPU_FREE(oldMask);
1929  *address2os = retval;
1930  return depth;
1931 }
1932 
1933 #endif /* KMP_ARCH_X86 || KMP_ARCH_X86_64 */
1934 
1935 #define osIdIndex 0
1936 #define threadIdIndex 1
1937 #define coreIdIndex 2
1938 #define pkgIdIndex 3
1939 #define nodeIdIndex 4
1940 
1941 typedef unsigned *ProcCpuInfo;
1942 static unsigned maxIndex = pkgIdIndex;
1943 
1944 static int __kmp_affinity_cmp_ProcCpuInfo_phys_id(const void *a,
1945  const void *b) {
1946  unsigned i;
1947  const unsigned *aa = *(unsigned *const *)a;
1948  const unsigned *bb = *(unsigned *const *)b;
1949  for (i = maxIndex;; i--) {
1950  if (aa[i] < bb[i])
1951  return -1;
1952  if (aa[i] > bb[i])
1953  return 1;
1954  if (i == osIdIndex)
1955  break;
1956  }
1957  return 0;
1958 }
1959 
1960 #if KMP_USE_HIER_SCHED
1961 // Set the array sizes for the hierarchy layers
1962 static void __kmp_dispatch_set_hierarchy_values() {
1963  // Set the maximum number of L1's to number of cores
1964  // Set the maximum number of L2's to to either number of cores / 2 for
1965  // Intel(R) Xeon Phi(TM) coprocessor formally codenamed Knights Landing
1966  // Or the number of cores for Intel(R) Xeon(R) processors
1967  // Set the maximum number of NUMA nodes and L3's to number of packages
1968  __kmp_hier_max_units[kmp_hier_layer_e::LAYER_THREAD + 1] =
1969  nPackages * nCoresPerPkg * __kmp_nThreadsPerCore;
1970  __kmp_hier_max_units[kmp_hier_layer_e::LAYER_L1 + 1] = __kmp_ncores;
1971 #if KMP_ARCH_X86_64 && (KMP_OS_LINUX || KMP_OS_FREEBSD || KMP_OS_WINDOWS) && \
1972  KMP_MIC_SUPPORTED
1973  if (__kmp_mic_type >= mic3)
1974  __kmp_hier_max_units[kmp_hier_layer_e::LAYER_L2 + 1] = __kmp_ncores / 2;
1975  else
1976 #endif // KMP_ARCH_X86_64 && (KMP_OS_LINUX || KMP_OS_WINDOWS)
1977  __kmp_hier_max_units[kmp_hier_layer_e::LAYER_L2 + 1] = __kmp_ncores;
1978  __kmp_hier_max_units[kmp_hier_layer_e::LAYER_L3 + 1] = nPackages;
1979  __kmp_hier_max_units[kmp_hier_layer_e::LAYER_NUMA + 1] = nPackages;
1980  __kmp_hier_max_units[kmp_hier_layer_e::LAYER_LOOP + 1] = 1;
1981  // Set the number of threads per unit
1982  // Number of hardware threads per L1/L2/L3/NUMA/LOOP
1983  __kmp_hier_threads_per[kmp_hier_layer_e::LAYER_THREAD + 1] = 1;
1984  __kmp_hier_threads_per[kmp_hier_layer_e::LAYER_L1 + 1] =
1985  __kmp_nThreadsPerCore;
1986 #if KMP_ARCH_X86_64 && (KMP_OS_LINUX || KMP_OS_FREEBSD || KMP_OS_WINDOWS) && \
1987  KMP_MIC_SUPPORTED
1988  if (__kmp_mic_type >= mic3)
1989  __kmp_hier_threads_per[kmp_hier_layer_e::LAYER_L2 + 1] =
1990  2 * __kmp_nThreadsPerCore;
1991  else
1992 #endif // KMP_ARCH_X86_64 && (KMP_OS_LINUX || KMP_OS_WINDOWS)
1993  __kmp_hier_threads_per[kmp_hier_layer_e::LAYER_L2 + 1] =
1994  __kmp_nThreadsPerCore;
1995  __kmp_hier_threads_per[kmp_hier_layer_e::LAYER_L3 + 1] =
1996  nCoresPerPkg * __kmp_nThreadsPerCore;
1997  __kmp_hier_threads_per[kmp_hier_layer_e::LAYER_NUMA + 1] =
1998  nCoresPerPkg * __kmp_nThreadsPerCore;
1999  __kmp_hier_threads_per[kmp_hier_layer_e::LAYER_LOOP + 1] =
2000  nPackages * nCoresPerPkg * __kmp_nThreadsPerCore;
2001 }
2002 
2003 // Return the index into the hierarchy for this tid and layer type (L1, L2, etc)
2004 // i.e., this thread's L1 or this thread's L2, etc.
2005 int __kmp_dispatch_get_index(int tid, kmp_hier_layer_e type) {
2006  int index = type + 1;
2007  int num_hw_threads = __kmp_hier_max_units[kmp_hier_layer_e::LAYER_THREAD + 1];
2008  KMP_DEBUG_ASSERT(type != kmp_hier_layer_e::LAYER_LAST);
2009  if (type == kmp_hier_layer_e::LAYER_THREAD)
2010  return tid;
2011  else if (type == kmp_hier_layer_e::LAYER_LOOP)
2012  return 0;
2013  KMP_DEBUG_ASSERT(__kmp_hier_max_units[index] != 0);
2014  if (tid >= num_hw_threads)
2015  tid = tid % num_hw_threads;
2016  return (tid / __kmp_hier_threads_per[index]) % __kmp_hier_max_units[index];
2017 }
2018 
2019 // Return the number of t1's per t2
2020 int __kmp_dispatch_get_t1_per_t2(kmp_hier_layer_e t1, kmp_hier_layer_e t2) {
2021  int i1 = t1 + 1;
2022  int i2 = t2 + 1;
2023  KMP_DEBUG_ASSERT(i1 <= i2);
2024  KMP_DEBUG_ASSERT(t1 != kmp_hier_layer_e::LAYER_LAST);
2025  KMP_DEBUG_ASSERT(t2 != kmp_hier_layer_e::LAYER_LAST);
2026  KMP_DEBUG_ASSERT(__kmp_hier_threads_per[i1] != 0);
2027  // (nthreads/t2) / (nthreads/t1) = t1 / t2
2028  return __kmp_hier_threads_per[i2] / __kmp_hier_threads_per[i1];
2029 }
2030 #endif // KMP_USE_HIER_SCHED
2031 
2032 // Parse /proc/cpuinfo (or an alternate file in the same format) to obtain the
2033 // affinity map.
2034 static int __kmp_affinity_create_cpuinfo_map(AddrUnsPair **address2os,
2035  int *line,
2036  kmp_i18n_id_t *const msg_id,
2037  FILE *f) {
2038  *address2os = NULL;
2039  *msg_id = kmp_i18n_null;
2040 
2041  // Scan of the file, and count the number of "processor" (osId) fields,
2042  // and find the highest value of <n> for a node_<n> field.
2043  char buf[256];
2044  unsigned num_records = 0;
2045  while (!feof(f)) {
2046  buf[sizeof(buf) - 1] = 1;
2047  if (!fgets(buf, sizeof(buf), f)) {
2048  // Read errors presumably because of EOF
2049  break;
2050  }
2051 
2052  char s1[] = "processor";
2053  if (strncmp(buf, s1, sizeof(s1) - 1) == 0) {
2054  num_records++;
2055  continue;
2056  }
2057 
2058  // FIXME - this will match "node_<n> <garbage>"
2059  unsigned level;
2060  if (KMP_SSCANF(buf, "node_%u id", &level) == 1) {
2061  if (nodeIdIndex + level >= maxIndex) {
2062  maxIndex = nodeIdIndex + level;
2063  }
2064  continue;
2065  }
2066  }
2067 
2068  // Check for empty file / no valid processor records, or too many. The number
2069  // of records can't exceed the number of valid bits in the affinity mask.
2070  if (num_records == 0) {
2071  *line = 0;
2072  *msg_id = kmp_i18n_str_NoProcRecords;
2073  return -1;
2074  }
2075  if (num_records > (unsigned)__kmp_xproc) {
2076  *line = 0;
2077  *msg_id = kmp_i18n_str_TooManyProcRecords;
2078  return -1;
2079  }
2080 
2081  // Set the file pointer back to the beginning, so that we can scan the file
2082  // again, this time performing a full parse of the data. Allocate a vector of
2083  // ProcCpuInfo object, where we will place the data. Adding an extra element
2084  // at the end allows us to remove a lot of extra checks for termination
2085  // conditions.
2086  if (fseek(f, 0, SEEK_SET) != 0) {
2087  *line = 0;
2088  *msg_id = kmp_i18n_str_CantRewindCpuinfo;
2089  return -1;
2090  }
2091 
2092  // Allocate the array of records to store the proc info in. The dummy
2093  // element at the end makes the logic in filling them out easier to code.
2094  unsigned **threadInfo =
2095  (unsigned **)__kmp_allocate((num_records + 1) * sizeof(unsigned *));
2096  unsigned i;
2097  for (i = 0; i <= num_records; i++) {
2098  threadInfo[i] =
2099  (unsigned *)__kmp_allocate((maxIndex + 1) * sizeof(unsigned));
2100  }
2101 
2102 #define CLEANUP_THREAD_INFO \
2103  for (i = 0; i <= num_records; i++) { \
2104  __kmp_free(threadInfo[i]); \
2105  } \
2106  __kmp_free(threadInfo);
2107 
2108  // A value of UINT_MAX means that we didn't find the field
2109  unsigned __index;
2110 
2111 #define INIT_PROC_INFO(p) \
2112  for (__index = 0; __index <= maxIndex; __index++) { \
2113  (p)[__index] = UINT_MAX; \
2114  }
2115 
2116  for (i = 0; i <= num_records; i++) {
2117  INIT_PROC_INFO(threadInfo[i]);
2118  }
2119 
2120  unsigned num_avail = 0;
2121  *line = 0;
2122  while (!feof(f)) {
2123  // Create an inner scoping level, so that all the goto targets at the end of
2124  // the loop appear in an outer scoping level. This avoids warnings about
2125  // jumping past an initialization to a target in the same block.
2126  {
2127  buf[sizeof(buf) - 1] = 1;
2128  bool long_line = false;
2129  if (!fgets(buf, sizeof(buf), f)) {
2130  // Read errors presumably because of EOF
2131  // If there is valid data in threadInfo[num_avail], then fake
2132  // a blank line in ensure that the last address gets parsed.
2133  bool valid = false;
2134  for (i = 0; i <= maxIndex; i++) {
2135  if (threadInfo[num_avail][i] != UINT_MAX) {
2136  valid = true;
2137  }
2138  }
2139  if (!valid) {
2140  break;
2141  }
2142  buf[0] = 0;
2143  } else if (!buf[sizeof(buf) - 1]) {
2144  // The line is longer than the buffer. Set a flag and don't
2145  // emit an error if we were going to ignore the line, anyway.
2146  long_line = true;
2147 
2148 #define CHECK_LINE \
2149  if (long_line) { \
2150  CLEANUP_THREAD_INFO; \
2151  *msg_id = kmp_i18n_str_LongLineCpuinfo; \
2152  return -1; \
2153  }
2154  }
2155  (*line)++;
2156 
2157  char s1[] = "processor";
2158  if (strncmp(buf, s1, sizeof(s1) - 1) == 0) {
2159  CHECK_LINE;
2160  char *p = strchr(buf + sizeof(s1) - 1, ':');
2161  unsigned val;
2162  if ((p == NULL) || (KMP_SSCANF(p + 1, "%u\n", &val) != 1))
2163  goto no_val;
2164  if (threadInfo[num_avail][osIdIndex] != UINT_MAX)
2165 #if KMP_ARCH_AARCH64
2166  // Handle the old AArch64 /proc/cpuinfo layout differently,
2167  // it contains all of the 'processor' entries listed in a
2168  // single 'Processor' section, therefore the normal looking
2169  // for duplicates in that section will always fail.
2170  num_avail++;
2171 #else
2172  goto dup_field;
2173 #endif
2174  threadInfo[num_avail][osIdIndex] = val;
2175 #if KMP_OS_LINUX && !(KMP_ARCH_X86 || KMP_ARCH_X86_64)
2176  char path[256];
2177  KMP_SNPRINTF(
2178  path, sizeof(path),
2179  "/sys/devices/system/cpu/cpu%u/topology/physical_package_id",
2180  threadInfo[num_avail][osIdIndex]);
2181  __kmp_read_from_file(path, "%u", &threadInfo[num_avail][pkgIdIndex]);
2182 
2183  KMP_SNPRINTF(path, sizeof(path),
2184  "/sys/devices/system/cpu/cpu%u/topology/core_id",
2185  threadInfo[num_avail][osIdIndex]);
2186  __kmp_read_from_file(path, "%u", &threadInfo[num_avail][coreIdIndex]);
2187  continue;
2188 #else
2189  }
2190  char s2[] = "physical id";
2191  if (strncmp(buf, s2, sizeof(s2) - 1) == 0) {
2192  CHECK_LINE;
2193  char *p = strchr(buf + sizeof(s2) - 1, ':');
2194  unsigned val;
2195  if ((p == NULL) || (KMP_SSCANF(p + 1, "%u\n", &val) != 1))
2196  goto no_val;
2197  if (threadInfo[num_avail][pkgIdIndex] != UINT_MAX)
2198  goto dup_field;
2199  threadInfo[num_avail][pkgIdIndex] = val;
2200  continue;
2201  }
2202  char s3[] = "core id";
2203  if (strncmp(buf, s3, sizeof(s3) - 1) == 0) {
2204  CHECK_LINE;
2205  char *p = strchr(buf + sizeof(s3) - 1, ':');
2206  unsigned val;
2207  if ((p == NULL) || (KMP_SSCANF(p + 1, "%u\n", &val) != 1))
2208  goto no_val;
2209  if (threadInfo[num_avail][coreIdIndex] != UINT_MAX)
2210  goto dup_field;
2211  threadInfo[num_avail][coreIdIndex] = val;
2212  continue;
2213 #endif // KMP_OS_LINUX && USE_SYSFS_INFO
2214  }
2215  char s4[] = "thread id";
2216  if (strncmp(buf, s4, sizeof(s4) - 1) == 0) {
2217  CHECK_LINE;
2218  char *p = strchr(buf + sizeof(s4) - 1, ':');
2219  unsigned val;
2220  if ((p == NULL) || (KMP_SSCANF(p + 1, "%u\n", &val) != 1))
2221  goto no_val;
2222  if (threadInfo[num_avail][threadIdIndex] != UINT_MAX)
2223  goto dup_field;
2224  threadInfo[num_avail][threadIdIndex] = val;
2225  continue;
2226  }
2227  unsigned level;
2228  if (KMP_SSCANF(buf, "node_%u id", &level) == 1) {
2229  CHECK_LINE;
2230  char *p = strchr(buf + sizeof(s4) - 1, ':');
2231  unsigned val;
2232  if ((p == NULL) || (KMP_SSCANF(p + 1, "%u\n", &val) != 1))
2233  goto no_val;
2234  KMP_ASSERT(nodeIdIndex + level <= maxIndex);
2235  if (threadInfo[num_avail][nodeIdIndex + level] != UINT_MAX)
2236  goto dup_field;
2237  threadInfo[num_avail][nodeIdIndex + level] = val;
2238  continue;
2239  }
2240 
2241  // We didn't recognize the leading token on the line. There are lots of
2242  // leading tokens that we don't recognize - if the line isn't empty, go on
2243  // to the next line.
2244  if ((*buf != 0) && (*buf != '\n')) {
2245  // If the line is longer than the buffer, read characters
2246  // until we find a newline.
2247  if (long_line) {
2248  int ch;
2249  while (((ch = fgetc(f)) != EOF) && (ch != '\n'))
2250  ;
2251  }
2252  continue;
2253  }
2254 
2255  // A newline has signalled the end of the processor record.
2256  // Check that there aren't too many procs specified.
2257  if ((int)num_avail == __kmp_xproc) {
2258  CLEANUP_THREAD_INFO;
2259  *msg_id = kmp_i18n_str_TooManyEntries;
2260  return -1;
2261  }
2262 
2263  // Check for missing fields. The osId field must be there, and we
2264  // currently require that the physical id field is specified, also.
2265  if (threadInfo[num_avail][osIdIndex] == UINT_MAX) {
2266  CLEANUP_THREAD_INFO;
2267  *msg_id = kmp_i18n_str_MissingProcField;
2268  return -1;
2269  }
2270  if (threadInfo[0][pkgIdIndex] == UINT_MAX) {
2271  CLEANUP_THREAD_INFO;
2272  *msg_id = kmp_i18n_str_MissingPhysicalIDField;
2273  return -1;
2274  }
2275 
2276  // Skip this proc if it is not included in the machine model.
2277  if (!KMP_CPU_ISSET(threadInfo[num_avail][osIdIndex],
2278  __kmp_affin_fullMask)) {
2279  INIT_PROC_INFO(threadInfo[num_avail]);
2280  continue;
2281  }
2282 
2283  // We have a successful parse of this proc's info.
2284  // Increment the counter, and prepare for the next proc.
2285  num_avail++;
2286  KMP_ASSERT(num_avail <= num_records);
2287  INIT_PROC_INFO(threadInfo[num_avail]);
2288  }
2289  continue;
2290 
2291  no_val:
2292  CLEANUP_THREAD_INFO;
2293  *msg_id = kmp_i18n_str_MissingValCpuinfo;
2294  return -1;
2295 
2296  dup_field:
2297  CLEANUP_THREAD_INFO;
2298  *msg_id = kmp_i18n_str_DuplicateFieldCpuinfo;
2299  return -1;
2300  }
2301  *line = 0;
2302 
2303 #if KMP_MIC && REDUCE_TEAM_SIZE
2304  unsigned teamSize = 0;
2305 #endif // KMP_MIC && REDUCE_TEAM_SIZE
2306 
2307  // check for num_records == __kmp_xproc ???
2308 
2309  // If there's only one thread context to bind to, form an Address object with
2310  // depth 1 and return immediately (or, if affinity is off, set address2os to
2311  // NULL and return).
2312  //
2313  // If it is configured to omit the package level when there is only a single
2314  // package, the logic at the end of this routine won't work if there is only a
2315  // single thread - it would try to form an Address object with depth 0.
2316  KMP_ASSERT(num_avail > 0);
2317  KMP_ASSERT(num_avail <= num_records);
2318  if (num_avail == 1) {
2319  __kmp_ncores = 1;
2320  __kmp_nThreadsPerCore = nCoresPerPkg = nPackages = 1;
2321  if (__kmp_affinity_verbose) {
2322  if (!KMP_AFFINITY_CAPABLE()) {
2323  KMP_INFORM(AffNotCapableUseCpuinfo, "KMP_AFFINITY");
2324  KMP_INFORM(AvailableOSProc, "KMP_AFFINITY", __kmp_avail_proc);
2325  KMP_INFORM(Uniform, "KMP_AFFINITY");
2326  } else {
2327  char buf[KMP_AFFIN_MASK_PRINT_LEN];
2328  __kmp_affinity_print_mask(buf, KMP_AFFIN_MASK_PRINT_LEN,
2329  __kmp_affin_fullMask);
2330  KMP_INFORM(AffCapableUseCpuinfo, "KMP_AFFINITY");
2331  if (__kmp_affinity_respect_mask) {
2332  KMP_INFORM(InitOSProcSetRespect, "KMP_AFFINITY", buf);
2333  } else {
2334  KMP_INFORM(InitOSProcSetNotRespect, "KMP_AFFINITY", buf);
2335  }
2336  KMP_INFORM(AvailableOSProc, "KMP_AFFINITY", __kmp_avail_proc);
2337  KMP_INFORM(Uniform, "KMP_AFFINITY");
2338  }
2339  int index;
2340  kmp_str_buf_t buf;
2341  __kmp_str_buf_init(&buf);
2342  __kmp_str_buf_print(&buf, "1");
2343  for (index = maxIndex - 1; index > pkgIdIndex; index--) {
2344  __kmp_str_buf_print(&buf, " x 1");
2345  }
2346  KMP_INFORM(TopologyExtra, "KMP_AFFINITY", buf.str, 1, 1, 1);
2347  __kmp_str_buf_free(&buf);
2348  }
2349 
2350  if (__kmp_affinity_type == affinity_none) {
2351  CLEANUP_THREAD_INFO;
2352  return 0;
2353  }
2354 
2355  *address2os = (AddrUnsPair *)__kmp_allocate(sizeof(AddrUnsPair));
2356  Address addr(1);
2357  addr.labels[0] = threadInfo[0][pkgIdIndex];
2358  (*address2os)[0] = AddrUnsPair(addr, threadInfo[0][osIdIndex]);
2359 
2360  if (__kmp_affinity_gran_levels < 0) {
2361  __kmp_affinity_gran_levels = 0;
2362  }
2363 
2364  if (__kmp_affinity_verbose) {
2365  __kmp_affinity_print_topology(*address2os, 1, 1, 0, -1, -1);
2366  }
2367 
2368  CLEANUP_THREAD_INFO;
2369  return 1;
2370  }
2371 
2372  // Sort the threadInfo table by physical Id.
2373  qsort(threadInfo, num_avail, sizeof(*threadInfo),
2374  __kmp_affinity_cmp_ProcCpuInfo_phys_id);
2375 
2376  // The table is now sorted by pkgId / coreId / threadId, but we really don't
2377  // know the radix of any of the fields. pkgId's may be sparsely assigned among
2378  // the chips on a system. Although coreId's are usually assigned
2379  // [0 .. coresPerPkg-1] and threadId's are usually assigned
2380  // [0..threadsPerCore-1], we don't want to make any such assumptions.
2381  //
2382  // For that matter, we don't know what coresPerPkg and threadsPerCore (or the
2383  // total # packages) are at this point - we want to determine that now. We
2384  // only have an upper bound on the first two figures.
2385  unsigned *counts =
2386  (unsigned *)__kmp_allocate((maxIndex + 1) * sizeof(unsigned));
2387  unsigned *maxCt =
2388  (unsigned *)__kmp_allocate((maxIndex + 1) * sizeof(unsigned));
2389  unsigned *totals =
2390  (unsigned *)__kmp_allocate((maxIndex + 1) * sizeof(unsigned));
2391  unsigned *lastId =
2392  (unsigned *)__kmp_allocate((maxIndex + 1) * sizeof(unsigned));
2393 
2394  bool assign_thread_ids = false;
2395  unsigned threadIdCt;
2396  unsigned index;
2397 
2398 restart_radix_check:
2399  threadIdCt = 0;
2400 
2401  // Initialize the counter arrays with data from threadInfo[0].
2402  if (assign_thread_ids) {
2403  if (threadInfo[0][threadIdIndex] == UINT_MAX) {
2404  threadInfo[0][threadIdIndex] = threadIdCt++;
2405  } else if (threadIdCt <= threadInfo[0][threadIdIndex]) {
2406  threadIdCt = threadInfo[0][threadIdIndex] + 1;
2407  }
2408  }
2409  for (index = 0; index <= maxIndex; index++) {
2410  counts[index] = 1;
2411  maxCt[index] = 1;
2412  totals[index] = 1;
2413  lastId[index] = threadInfo[0][index];
2414  ;
2415  }
2416 
2417  // Run through the rest of the OS procs.
2418  for (i = 1; i < num_avail; i++) {
2419  // Find the most significant index whose id differs from the id for the
2420  // previous OS proc.
2421  for (index = maxIndex; index >= threadIdIndex; index--) {
2422  if (assign_thread_ids && (index == threadIdIndex)) {
2423  // Auto-assign the thread id field if it wasn't specified.
2424  if (threadInfo[i][threadIdIndex] == UINT_MAX) {
2425  threadInfo[i][threadIdIndex] = threadIdCt++;
2426  }
2427  // Apparently the thread id field was specified for some entries and not
2428  // others. Start the thread id counter off at the next higher thread id.
2429  else if (threadIdCt <= threadInfo[i][threadIdIndex]) {
2430  threadIdCt = threadInfo[i][threadIdIndex] + 1;
2431  }
2432  }
2433  if (threadInfo[i][index] != lastId[index]) {
2434  // Run through all indices which are less significant, and reset the
2435  // counts to 1. At all levels up to and including index, we need to
2436  // increment the totals and record the last id.
2437  unsigned index2;
2438  for (index2 = threadIdIndex; index2 < index; index2++) {
2439  totals[index2]++;
2440  if (counts[index2] > maxCt[index2]) {
2441  maxCt[index2] = counts[index2];
2442  }
2443  counts[index2] = 1;
2444  lastId[index2] = threadInfo[i][index2];
2445  }
2446  counts[index]++;
2447  totals[index]++;
2448  lastId[index] = threadInfo[i][index];
2449 
2450  if (assign_thread_ids && (index > threadIdIndex)) {
2451 
2452 #if KMP_MIC && REDUCE_TEAM_SIZE
2453  // The default team size is the total #threads in the machine
2454  // minus 1 thread for every core that has 3 or more threads.
2455  teamSize += (threadIdCt <= 2) ? (threadIdCt) : (threadIdCt - 1);
2456 #endif // KMP_MIC && REDUCE_TEAM_SIZE
2457 
2458  // Restart the thread counter, as we are on a new core.
2459  threadIdCt = 0;
2460 
2461  // Auto-assign the thread id field if it wasn't specified.
2462  if (threadInfo[i][threadIdIndex] == UINT_MAX) {
2463  threadInfo[i][threadIdIndex] = threadIdCt++;
2464  }
2465 
2466  // Apparently the thread id field was specified for some entries and
2467  // not others. Start the thread id counter off at the next higher
2468  // thread id.
2469  else if (threadIdCt <= threadInfo[i][threadIdIndex]) {
2470  threadIdCt = threadInfo[i][threadIdIndex] + 1;
2471  }
2472  }
2473  break;
2474  }
2475  }
2476  if (index < threadIdIndex) {
2477  // If thread ids were specified, it is an error if they are not unique.
2478  // Also, check that we waven't already restarted the loop (to be safe -
2479  // shouldn't need to).
2480  if ((threadInfo[i][threadIdIndex] != UINT_MAX) || assign_thread_ids) {
2481  __kmp_free(lastId);
2482  __kmp_free(totals);
2483  __kmp_free(maxCt);
2484  __kmp_free(counts);
2485  CLEANUP_THREAD_INFO;
2486  *msg_id = kmp_i18n_str_PhysicalIDsNotUnique;
2487  return -1;
2488  }
2489 
2490  // If the thread ids were not specified and we see entries entries that
2491  // are duplicates, start the loop over and assign the thread ids manually.
2492  assign_thread_ids = true;
2493  goto restart_radix_check;
2494  }
2495  }
2496 
2497 #if KMP_MIC && REDUCE_TEAM_SIZE
2498  // The default team size is the total #threads in the machine
2499  // minus 1 thread for every core that has 3 or more threads.
2500  teamSize += (threadIdCt <= 2) ? (threadIdCt) : (threadIdCt - 1);
2501 #endif // KMP_MIC && REDUCE_TEAM_SIZE
2502 
2503  for (index = threadIdIndex; index <= maxIndex; index++) {
2504  if (counts[index] > maxCt[index]) {
2505  maxCt[index] = counts[index];
2506  }
2507  }
2508 
2509  __kmp_nThreadsPerCore = maxCt[threadIdIndex];
2510  nCoresPerPkg = maxCt[coreIdIndex];
2511  nPackages = totals[pkgIdIndex];
2512 
2513  // Check to see if the machine topology is uniform
2514  unsigned prod = totals[maxIndex];
2515  for (index = threadIdIndex; index < maxIndex; index++) {
2516  prod *= maxCt[index];
2517  }
2518  bool uniform = (prod == totals[threadIdIndex]);
2519 
2520  // When affinity is off, this routine will still be called to set
2521  // __kmp_ncores, as well as __kmp_nThreadsPerCore, nCoresPerPkg, & nPackages.
2522  // Make sure all these vars are set correctly, and return now if affinity is
2523  // not enabled.
2524  __kmp_ncores = totals[coreIdIndex];
2525 
2526  if (__kmp_affinity_verbose) {
2527  if (!KMP_AFFINITY_CAPABLE()) {
2528  KMP_INFORM(AffNotCapableUseCpuinfo, "KMP_AFFINITY");
2529  KMP_INFORM(AvailableOSProc, "KMP_AFFINITY", __kmp_avail_proc);
2530  if (uniform) {
2531  KMP_INFORM(Uniform, "KMP_AFFINITY");
2532  } else {
2533  KMP_INFORM(NonUniform, "KMP_AFFINITY");
2534  }
2535  } else {
2536  char buf[KMP_AFFIN_MASK_PRINT_LEN];
2537  __kmp_affinity_print_mask(buf, KMP_AFFIN_MASK_PRINT_LEN,
2538  __kmp_affin_fullMask);
2539  KMP_INFORM(AffCapableUseCpuinfo, "KMP_AFFINITY");
2540  if (__kmp_affinity_respect_mask) {
2541  KMP_INFORM(InitOSProcSetRespect, "KMP_AFFINITY", buf);
2542  } else {
2543  KMP_INFORM(InitOSProcSetNotRespect, "KMP_AFFINITY", buf);
2544  }
2545  KMP_INFORM(AvailableOSProc, "KMP_AFFINITY", __kmp_avail_proc);
2546  if (uniform) {
2547  KMP_INFORM(Uniform, "KMP_AFFINITY");
2548  } else {
2549  KMP_INFORM(NonUniform, "KMP_AFFINITY");
2550  }
2551  }
2552  kmp_str_buf_t buf;
2553  __kmp_str_buf_init(&buf);
2554 
2555  __kmp_str_buf_print(&buf, "%d", totals[maxIndex]);
2556  for (index = maxIndex - 1; index >= pkgIdIndex; index--) {
2557  __kmp_str_buf_print(&buf, " x %d", maxCt[index]);
2558  }
2559  KMP_INFORM(TopologyExtra, "KMP_AFFINITY", buf.str, maxCt[coreIdIndex],
2560  maxCt[threadIdIndex], __kmp_ncores);
2561 
2562  __kmp_str_buf_free(&buf);
2563  }
2564 
2565 #if KMP_MIC && REDUCE_TEAM_SIZE
2566  // Set the default team size.
2567  if ((__kmp_dflt_team_nth == 0) && (teamSize > 0)) {
2568  __kmp_dflt_team_nth = teamSize;
2569  KA_TRACE(20, ("__kmp_affinity_create_cpuinfo_map: setting "
2570  "__kmp_dflt_team_nth = %d\n",
2571  __kmp_dflt_team_nth));
2572  }
2573 #endif // KMP_MIC && REDUCE_TEAM_SIZE
2574 
2575  KMP_DEBUG_ASSERT(__kmp_pu_os_idx == NULL);
2576  KMP_DEBUG_ASSERT(num_avail == (unsigned)__kmp_avail_proc);
2577  __kmp_pu_os_idx = (int *)__kmp_allocate(sizeof(int) * __kmp_avail_proc);
2578  for (i = 0; i < num_avail; ++i) { // fill the os indices
2579  __kmp_pu_os_idx[i] = threadInfo[i][osIdIndex];
2580  }
2581 
2582  if (__kmp_affinity_type == affinity_none) {
2583  __kmp_free(lastId);
2584  __kmp_free(totals);
2585  __kmp_free(maxCt);
2586  __kmp_free(counts);
2587  CLEANUP_THREAD_INFO;
2588  return 0;
2589  }
2590 
2591  // Count the number of levels which have more nodes at that level than at the
2592  // parent's level (with there being an implicit root node of the top level).
2593  // This is equivalent to saying that there is at least one node at this level
2594  // which has a sibling. These levels are in the map, and the package level is
2595  // always in the map.
2596  bool *inMap = (bool *)__kmp_allocate((maxIndex + 1) * sizeof(bool));
2597  for (index = threadIdIndex; index < maxIndex; index++) {
2598  KMP_ASSERT(totals[index] >= totals[index + 1]);
2599  inMap[index] = (totals[index] > totals[index + 1]);
2600  }
2601  inMap[maxIndex] = (totals[maxIndex] > 1);
2602  inMap[pkgIdIndex] = true;
2603 
2604  int depth = 0;
2605  for (index = threadIdIndex; index <= maxIndex; index++) {
2606  if (inMap[index]) {
2607  depth++;
2608  }
2609  }
2610  KMP_ASSERT(depth > 0);
2611 
2612  // Construct the data structure that is to be returned.
2613  *address2os = (AddrUnsPair *)__kmp_allocate(sizeof(AddrUnsPair) * num_avail);
2614  int pkgLevel = -1;
2615  int coreLevel = -1;
2616  int threadLevel = -1;
2617 
2618  for (i = 0; i < num_avail; ++i) {
2619  Address addr(depth);
2620  unsigned os = threadInfo[i][osIdIndex];
2621  int src_index;
2622  int dst_index = 0;
2623 
2624  for (src_index = maxIndex; src_index >= threadIdIndex; src_index--) {
2625  if (!inMap[src_index]) {
2626  continue;
2627  }
2628  addr.labels[dst_index] = threadInfo[i][src_index];
2629  if (src_index == pkgIdIndex) {
2630  pkgLevel = dst_index;
2631  } else if (src_index == coreIdIndex) {
2632  coreLevel = dst_index;
2633  } else if (src_index == threadIdIndex) {
2634  threadLevel = dst_index;
2635  }
2636  dst_index++;
2637  }
2638  (*address2os)[i] = AddrUnsPair(addr, os);
2639  }
2640 
2641  if (__kmp_affinity_gran_levels < 0) {
2642  // Set the granularity level based on what levels are modeled
2643  // in the machine topology map.
2644  unsigned src_index;
2645  __kmp_affinity_gran_levels = 0;
2646  for (src_index = threadIdIndex; src_index <= maxIndex; src_index++) {
2647  if (!inMap[src_index]) {
2648  continue;
2649  }
2650  switch (src_index) {
2651  case threadIdIndex:
2652  if (__kmp_affinity_gran > affinity_gran_thread) {
2653  __kmp_affinity_gran_levels++;
2654  }
2655 
2656  break;
2657  case coreIdIndex:
2658  if (__kmp_affinity_gran > affinity_gran_core) {
2659  __kmp_affinity_gran_levels++;
2660  }
2661  break;
2662 
2663  case pkgIdIndex:
2664  if (__kmp_affinity_gran > affinity_gran_package) {
2665  __kmp_affinity_gran_levels++;
2666  }
2667  break;
2668  }
2669  }
2670  }
2671 
2672  if (__kmp_affinity_verbose) {
2673  __kmp_affinity_print_topology(*address2os, num_avail, depth, pkgLevel,
2674  coreLevel, threadLevel);
2675  }
2676 
2677  __kmp_free(inMap);
2678  __kmp_free(lastId);
2679  __kmp_free(totals);
2680  __kmp_free(maxCt);
2681  __kmp_free(counts);
2682  CLEANUP_THREAD_INFO;
2683  return depth;
2684 }
2685 
2686 // Create and return a table of affinity masks, indexed by OS thread ID.
2687 // This routine handles OR'ing together all the affinity masks of threads
2688 // that are sufficiently close, if granularity > fine.
2689 static kmp_affin_mask_t *__kmp_create_masks(unsigned *maxIndex,
2690  unsigned *numUnique,
2691  AddrUnsPair *address2os,
2692  unsigned numAddrs) {
2693  // First form a table of affinity masks in order of OS thread id.
2694  unsigned depth;
2695  unsigned maxOsId;
2696  unsigned i;
2697 
2698  KMP_ASSERT(numAddrs > 0);
2699  depth = address2os[0].first.depth;
2700 
2701  maxOsId = 0;
2702  for (i = numAddrs - 1;; --i) {
2703  unsigned osId = address2os[i].second;
2704  if (osId > maxOsId) {
2705  maxOsId = osId;
2706  }
2707  if (i == 0)
2708  break;
2709  }
2710  kmp_affin_mask_t *osId2Mask;
2711  KMP_CPU_ALLOC_ARRAY(osId2Mask, (maxOsId + 1));
2712 
2713  // Sort the address2os table according to physical order. Doing so will put
2714  // all threads on the same core/package/node in consecutive locations.
2715  qsort(address2os, numAddrs, sizeof(*address2os),
2716  __kmp_affinity_cmp_Address_labels);
2717 
2718  KMP_ASSERT(__kmp_affinity_gran_levels >= 0);
2719  if (__kmp_affinity_verbose && (__kmp_affinity_gran_levels > 0)) {
2720  KMP_INFORM(ThreadsMigrate, "KMP_AFFINITY", __kmp_affinity_gran_levels);
2721  }
2722  if (__kmp_affinity_gran_levels >= (int)depth) {
2723  if (__kmp_affinity_verbose ||
2724  (__kmp_affinity_warnings && (__kmp_affinity_type != affinity_none))) {
2725  KMP_WARNING(AffThreadsMayMigrate);
2726  }
2727  }
2728 
2729  // Run through the table, forming the masks for all threads on each core.
2730  // Threads on the same core will have identical "Address" objects, not
2731  // considering the last level, which must be the thread id. All threads on a
2732  // core will appear consecutively.
2733  unsigned unique = 0;
2734  unsigned j = 0; // index of 1st thread on core
2735  unsigned leader = 0;
2736  Address *leaderAddr = &(address2os[0].first);
2737  kmp_affin_mask_t *sum;
2738  KMP_CPU_ALLOC_ON_STACK(sum);
2739  KMP_CPU_ZERO(sum);
2740  KMP_CPU_SET(address2os[0].second, sum);
2741  for (i = 1; i < numAddrs; i++) {
2742  // If this thread is sufficiently close to the leader (within the
2743  // granularity setting), then set the bit for this os thread in the
2744  // affinity mask for this group, and go on to the next thread.
2745  if (leaderAddr->isClose(address2os[i].first, __kmp_affinity_gran_levels)) {
2746  KMP_CPU_SET(address2os[i].second, sum);
2747  continue;
2748  }
2749 
2750  // For every thread in this group, copy the mask to the thread's entry in
2751  // the osId2Mask table. Mark the first address as a leader.
2752  for (; j < i; j++) {
2753  unsigned osId = address2os[j].second;
2754  KMP_DEBUG_ASSERT(osId <= maxOsId);
2755  kmp_affin_mask_t *mask = KMP_CPU_INDEX(osId2Mask, osId);
2756  KMP_CPU_COPY(mask, sum);
2757  address2os[j].first.leader = (j == leader);
2758  }
2759  unique++;
2760 
2761  // Start a new mask.
2762  leader = i;
2763  leaderAddr = &(address2os[i].first);
2764  KMP_CPU_ZERO(sum);
2765  KMP_CPU_SET(address2os[i].second, sum);
2766  }
2767 
2768  // For every thread in last group, copy the mask to the thread's
2769  // entry in the osId2Mask table.
2770  for (; j < i; j++) {
2771  unsigned osId = address2os[j].second;
2772  KMP_DEBUG_ASSERT(osId <= maxOsId);
2773  kmp_affin_mask_t *mask = KMP_CPU_INDEX(osId2Mask, osId);
2774  KMP_CPU_COPY(mask, sum);
2775  address2os[j].first.leader = (j == leader);
2776  }
2777  unique++;
2778  KMP_CPU_FREE_FROM_STACK(sum);
2779 
2780  *maxIndex = maxOsId;
2781  *numUnique = unique;
2782  return osId2Mask;
2783 }
2784 
2785 // Stuff for the affinity proclist parsers. It's easier to declare these vars
2786 // as file-static than to try and pass them through the calling sequence of
2787 // the recursive-descent OMP_PLACES parser.
2788 static kmp_affin_mask_t *newMasks;
2789 static int numNewMasks;
2790 static int nextNewMask;
2791 
2792 #define ADD_MASK(_mask) \
2793  { \
2794  if (nextNewMask >= numNewMasks) { \
2795  int i; \
2796  numNewMasks *= 2; \
2797  kmp_affin_mask_t *temp; \
2798  KMP_CPU_INTERNAL_ALLOC_ARRAY(temp, numNewMasks); \
2799  for (i = 0; i < numNewMasks / 2; i++) { \
2800  kmp_affin_mask_t *src = KMP_CPU_INDEX(newMasks, i); \
2801  kmp_affin_mask_t *dest = KMP_CPU_INDEX(temp, i); \
2802  KMP_CPU_COPY(dest, src); \
2803  } \
2804  KMP_CPU_INTERNAL_FREE_ARRAY(newMasks, numNewMasks / 2); \
2805  newMasks = temp; \
2806  } \
2807  KMP_CPU_COPY(KMP_CPU_INDEX(newMasks, nextNewMask), (_mask)); \
2808  nextNewMask++; \
2809  }
2810 
2811 #define ADD_MASK_OSID(_osId, _osId2Mask, _maxOsId) \
2812  { \
2813  if (((_osId) > _maxOsId) || \
2814  (!KMP_CPU_ISSET((_osId), KMP_CPU_INDEX((_osId2Mask), (_osId))))) { \
2815  if (__kmp_affinity_verbose || \
2816  (__kmp_affinity_warnings && \
2817  (__kmp_affinity_type != affinity_none))) { \
2818  KMP_WARNING(AffIgnoreInvalidProcID, _osId); \
2819  } \
2820  } else { \
2821  ADD_MASK(KMP_CPU_INDEX(_osId2Mask, (_osId))); \
2822  } \
2823  }
2824 
2825 // Re-parse the proclist (for the explicit affinity type), and form the list
2826 // of affinity newMasks indexed by gtid.
2827 static void __kmp_affinity_process_proclist(kmp_affin_mask_t **out_masks,
2828  unsigned int *out_numMasks,
2829  const char *proclist,
2830  kmp_affin_mask_t *osId2Mask,
2831  int maxOsId) {
2832  int i;
2833  const char *scan = proclist;
2834  const char *next = proclist;
2835 
2836  // We use malloc() for the temporary mask vector, so that we can use
2837  // realloc() to extend it.
2838  numNewMasks = 2;
2839  KMP_CPU_INTERNAL_ALLOC_ARRAY(newMasks, numNewMasks);
2840  nextNewMask = 0;
2841  kmp_affin_mask_t *sumMask;
2842  KMP_CPU_ALLOC(sumMask);
2843  int setSize = 0;
2844 
2845  for (;;) {
2846  int start, end, stride;
2847 
2848  SKIP_WS(scan);
2849  next = scan;
2850  if (*next == '\0') {
2851  break;
2852  }
2853 
2854  if (*next == '{') {
2855  int num;
2856  setSize = 0;
2857  next++; // skip '{'
2858  SKIP_WS(next);
2859  scan = next;
2860 
2861  // Read the first integer in the set.
2862  KMP_ASSERT2((*next >= '0') && (*next <= '9'), "bad proclist");
2863  SKIP_DIGITS(next);
2864  num = __kmp_str_to_int(scan, *next);
2865  KMP_ASSERT2(num >= 0, "bad explicit proc list");
2866 
2867  // Copy the mask for that osId to the sum (union) mask.
2868  if ((num > maxOsId) ||
2869  (!KMP_CPU_ISSET(num, KMP_CPU_INDEX(osId2Mask, num)))) {
2870  if (__kmp_affinity_verbose ||
2871  (__kmp_affinity_warnings &&
2872  (__kmp_affinity_type != affinity_none))) {
2873  KMP_WARNING(AffIgnoreInvalidProcID, num);
2874  }
2875  KMP_CPU_ZERO(sumMask);
2876  } else {
2877  KMP_CPU_COPY(sumMask, KMP_CPU_INDEX(osId2Mask, num));
2878  setSize = 1;
2879  }
2880 
2881  for (;;) {
2882  // Check for end of set.
2883  SKIP_WS(next);
2884  if (*next == '}') {
2885  next++; // skip '}'
2886  break;
2887  }
2888 
2889  // Skip optional comma.
2890  if (*next == ',') {
2891  next++;
2892  }
2893  SKIP_WS(next);
2894 
2895  // Read the next integer in the set.
2896  scan = next;
2897  KMP_ASSERT2((*next >= '0') && (*next <= '9'), "bad explicit proc list");
2898 
2899  SKIP_DIGITS(next);
2900  num = __kmp_str_to_int(scan, *next);
2901  KMP_ASSERT2(num >= 0, "bad explicit proc list");
2902 
2903  // Add the mask for that osId to the sum mask.
2904  if ((num > maxOsId) ||
2905  (!KMP_CPU_ISSET(num, KMP_CPU_INDEX(osId2Mask, num)))) {
2906  if (__kmp_affinity_verbose ||
2907  (__kmp_affinity_warnings &&
2908  (__kmp_affinity_type != affinity_none))) {
2909  KMP_WARNING(AffIgnoreInvalidProcID, num);
2910  }
2911  } else {
2912  KMP_CPU_UNION(sumMask, KMP_CPU_INDEX(osId2Mask, num));
2913  setSize++;
2914  }
2915  }
2916  if (setSize > 0) {
2917  ADD_MASK(sumMask);
2918  }
2919 
2920  SKIP_WS(next);
2921  if (*next == ',') {
2922  next++;
2923  }
2924  scan = next;
2925  continue;
2926  }
2927 
2928  // Read the first integer.
2929  KMP_ASSERT2((*next >= '0') && (*next <= '9'), "bad explicit proc list");
2930  SKIP_DIGITS(next);
2931  start = __kmp_str_to_int(scan, *next);
2932  KMP_ASSERT2(start >= 0, "bad explicit proc list");
2933  SKIP_WS(next);
2934 
2935  // If this isn't a range, then add a mask to the list and go on.
2936  if (*next != '-') {
2937  ADD_MASK_OSID(start, osId2Mask, maxOsId);
2938 
2939  // Skip optional comma.
2940  if (*next == ',') {
2941  next++;
2942  }
2943  scan = next;
2944  continue;
2945  }
2946 
2947  // This is a range. Skip over the '-' and read in the 2nd int.
2948  next++; // skip '-'
2949  SKIP_WS(next);
2950  scan = next;
2951  KMP_ASSERT2((*next >= '0') && (*next <= '9'), "bad explicit proc list");
2952  SKIP_DIGITS(next);
2953  end = __kmp_str_to_int(scan, *next);
2954  KMP_ASSERT2(end >= 0, "bad explicit proc list");
2955 
2956  // Check for a stride parameter
2957  stride = 1;
2958  SKIP_WS(next);
2959  if (*next == ':') {
2960  // A stride is specified. Skip over the ':" and read the 3rd int.
2961  int sign = +1;
2962  next++; // skip ':'
2963  SKIP_WS(next);
2964  scan = next;
2965  if (*next == '-') {
2966  sign = -1;
2967  next++;
2968  SKIP_WS(next);
2969  scan = next;
2970  }
2971  KMP_ASSERT2((*next >= '0') && (*next <= '9'), "bad explicit proc list");
2972  SKIP_DIGITS(next);
2973  stride = __kmp_str_to_int(scan, *next);
2974  KMP_ASSERT2(stride >= 0, "bad explicit proc list");
2975  stride *= sign;
2976  }
2977 
2978  // Do some range checks.
2979  KMP_ASSERT2(stride != 0, "bad explicit proc list");
2980  if (stride > 0) {
2981  KMP_ASSERT2(start <= end, "bad explicit proc list");
2982  } else {
2983  KMP_ASSERT2(start >= end, "bad explicit proc list");
2984  }
2985  KMP_ASSERT2((end - start) / stride <= 65536, "bad explicit proc list");
2986 
2987  // Add the mask for each OS proc # to the list.
2988  if (stride > 0) {
2989  do {
2990  ADD_MASK_OSID(start, osId2Mask, maxOsId);
2991  start += stride;
2992  } while (start <= end);
2993  } else {
2994  do {
2995  ADD_MASK_OSID(start, osId2Mask, maxOsId);
2996  start += stride;
2997  } while (start >= end);
2998  }
2999 
3000  // Skip optional comma.
3001  SKIP_WS(next);
3002  if (*next == ',') {
3003  next++;
3004  }
3005  scan = next;
3006  }
3007 
3008  *out_numMasks = nextNewMask;
3009  if (nextNewMask == 0) {
3010  *out_masks = NULL;
3011  KMP_CPU_INTERNAL_FREE_ARRAY(newMasks, numNewMasks);
3012  return;
3013  }
3014  KMP_CPU_ALLOC_ARRAY((*out_masks), nextNewMask);
3015  for (i = 0; i < nextNewMask; i++) {
3016  kmp_affin_mask_t *src = KMP_CPU_INDEX(newMasks, i);
3017  kmp_affin_mask_t *dest = KMP_CPU_INDEX((*out_masks), i);
3018  KMP_CPU_COPY(dest, src);
3019  }
3020  KMP_CPU_INTERNAL_FREE_ARRAY(newMasks, numNewMasks);
3021  KMP_CPU_FREE(sumMask);
3022 }
3023 
3024 /*-----------------------------------------------------------------------------
3025 Re-parse the OMP_PLACES proc id list, forming the newMasks for the different
3026 places. Again, Here is the grammar:
3027 
3028 place_list := place
3029 place_list := place , place_list
3030 place := num
3031 place := place : num
3032 place := place : num : signed
3033 place := { subplacelist }
3034 place := ! place // (lowest priority)
3035 subplace_list := subplace
3036 subplace_list := subplace , subplace_list
3037 subplace := num
3038 subplace := num : num
3039 subplace := num : num : signed
3040 signed := num
3041 signed := + signed
3042 signed := - signed
3043 -----------------------------------------------------------------------------*/
3044 static void __kmp_process_subplace_list(const char **scan,
3045  kmp_affin_mask_t *osId2Mask,
3046  int maxOsId, kmp_affin_mask_t *tempMask,
3047  int *setSize) {
3048  const char *next;
3049 
3050  for (;;) {
3051  int start, count, stride, i;
3052 
3053  // Read in the starting proc id
3054  SKIP_WS(*scan);
3055  KMP_ASSERT2((**scan >= '0') && (**scan <= '9'), "bad explicit places list");
3056  next = *scan;
3057  SKIP_DIGITS(next);
3058  start = __kmp_str_to_int(*scan, *next);
3059  KMP_ASSERT(start >= 0);
3060  *scan = next;
3061 
3062  // valid follow sets are ',' ':' and '}'
3063  SKIP_WS(*scan);
3064  if (**scan == '}' || **scan == ',') {
3065  if ((start > maxOsId) ||
3066  (!KMP_CPU_ISSET(start, KMP_CPU_INDEX(osId2Mask, start)))) {
3067  if (__kmp_affinity_verbose ||
3068  (__kmp_affinity_warnings &&
3069  (__kmp_affinity_type != affinity_none))) {
3070  KMP_WARNING(AffIgnoreInvalidProcID, start);
3071  }
3072  } else {
3073  KMP_CPU_UNION(tempMask, KMP_CPU_INDEX(osId2Mask, start));
3074  (*setSize)++;
3075  }
3076  if (**scan == '}') {
3077  break;
3078  }
3079  (*scan)++; // skip ','
3080  continue;
3081  }
3082  KMP_ASSERT2(**scan == ':', "bad explicit places list");
3083  (*scan)++; // skip ':'
3084 
3085  // Read count parameter
3086  SKIP_WS(*scan);
3087  KMP_ASSERT2((**scan >= '0') && (**scan <= '9'), "bad explicit places list");
3088  next = *scan;
3089  SKIP_DIGITS(next);
3090  count = __kmp_str_to_int(*scan, *next);
3091  KMP_ASSERT(count >= 0);
3092  *scan = next;
3093 
3094  // valid follow sets are ',' ':' and '}'
3095  SKIP_WS(*scan);
3096  if (**scan == '}' || **scan == ',') {
3097  for (i = 0; i < count; i++) {
3098  if ((start > maxOsId) ||
3099  (!KMP_CPU_ISSET(start, KMP_CPU_INDEX(osId2Mask, start)))) {
3100  if (__kmp_affinity_verbose ||
3101  (__kmp_affinity_warnings &&
3102  (__kmp_affinity_type != affinity_none))) {
3103  KMP_WARNING(AffIgnoreInvalidProcID, start);
3104  }
3105  break; // don't proliferate warnings for large count
3106  } else {
3107  KMP_CPU_UNION(tempMask, KMP_CPU_INDEX(osId2Mask, start));
3108  start++;
3109  (*setSize)++;
3110  }
3111  }
3112  if (**scan == '}') {
3113  break;
3114  }
3115  (*scan)++; // skip ','
3116  continue;
3117  }
3118  KMP_ASSERT2(**scan == ':', "bad explicit places list");
3119  (*scan)++; // skip ':'
3120 
3121  // Read stride parameter
3122  int sign = +1;
3123  for (;;) {
3124  SKIP_WS(*scan);
3125  if (**scan == '+') {
3126  (*scan)++; // skip '+'
3127  continue;
3128  }
3129  if (**scan == '-') {
3130  sign *= -1;
3131  (*scan)++; // skip '-'
3132  continue;
3133  }
3134  break;
3135  }
3136  SKIP_WS(*scan);
3137  KMP_ASSERT2((**scan >= '0') && (**scan <= '9'), "bad explicit places list");
3138  next = *scan;
3139  SKIP_DIGITS(next);
3140  stride = __kmp_str_to_int(*scan, *next);
3141  KMP_ASSERT(stride >= 0);
3142  *scan = next;
3143  stride *= sign;
3144 
3145  // valid follow sets are ',' and '}'
3146  SKIP_WS(*scan);
3147  if (**scan == '}' || **scan == ',') {
3148  for (i = 0; i < count; i++) {
3149  if ((start > maxOsId) ||
3150  (!KMP_CPU_ISSET(start, KMP_CPU_INDEX(osId2Mask, start)))) {
3151  if (__kmp_affinity_verbose ||
3152  (__kmp_affinity_warnings &&
3153  (__kmp_affinity_type != affinity_none))) {
3154  KMP_WARNING(AffIgnoreInvalidProcID, start);
3155  }
3156  break; // don't proliferate warnings for large count
3157  } else {
3158  KMP_CPU_UNION(tempMask, KMP_CPU_INDEX(osId2Mask, start));
3159  start += stride;
3160  (*setSize)++;
3161  }
3162  }
3163  if (**scan == '}') {
3164  break;
3165  }
3166  (*scan)++; // skip ','
3167  continue;
3168  }
3169 
3170  KMP_ASSERT2(0, "bad explicit places list");
3171  }
3172 }
3173 
3174 static void __kmp_process_place(const char **scan, kmp_affin_mask_t *osId2Mask,
3175  int maxOsId, kmp_affin_mask_t *tempMask,
3176  int *setSize) {
3177  const char *next;
3178 
3179  // valid follow sets are '{' '!' and num
3180  SKIP_WS(*scan);
3181  if (**scan == '{') {
3182  (*scan)++; // skip '{'
3183  __kmp_process_subplace_list(scan, osId2Mask, maxOsId, tempMask, setSize);
3184  KMP_ASSERT2(**scan == '}', "bad explicit places list");
3185  (*scan)++; // skip '}'
3186  } else if (**scan == '!') {
3187  (*scan)++; // skip '!'
3188  __kmp_process_place(scan, osId2Mask, maxOsId, tempMask, setSize);
3189  KMP_CPU_COMPLEMENT(maxOsId, tempMask);
3190  } else if ((**scan >= '0') && (**scan <= '9')) {
3191  next = *scan;
3192  SKIP_DIGITS(next);
3193  int num = __kmp_str_to_int(*scan, *next);
3194  KMP_ASSERT(num >= 0);
3195  if ((num > maxOsId) ||
3196  (!KMP_CPU_ISSET(num, KMP_CPU_INDEX(osId2Mask, num)))) {
3197  if (__kmp_affinity_verbose ||
3198  (__kmp_affinity_warnings && (__kmp_affinity_type != affinity_none))) {
3199  KMP_WARNING(AffIgnoreInvalidProcID, num);
3200  }
3201  } else {
3202  KMP_CPU_UNION(tempMask, KMP_CPU_INDEX(osId2Mask, num));
3203  (*setSize)++;
3204  }
3205  *scan = next; // skip num
3206  } else {
3207  KMP_ASSERT2(0, "bad explicit places list");
3208  }
3209 }
3210 
3211 // static void
3212 void __kmp_affinity_process_placelist(kmp_affin_mask_t **out_masks,
3213  unsigned int *out_numMasks,
3214  const char *placelist,
3215  kmp_affin_mask_t *osId2Mask,
3216  int maxOsId) {
3217  int i, j, count, stride, sign;
3218  const char *scan = placelist;
3219  const char *next = placelist;
3220 
3221  numNewMasks = 2;
3222  KMP_CPU_INTERNAL_ALLOC_ARRAY(newMasks, numNewMasks);
3223  nextNewMask = 0;
3224 
3225  // tempMask is modified based on the previous or initial
3226  // place to form the current place
3227  // previousMask contains the previous place
3228  kmp_affin_mask_t *tempMask;
3229  kmp_affin_mask_t *previousMask;
3230  KMP_CPU_ALLOC(tempMask);
3231  KMP_CPU_ZERO(tempMask);
3232  KMP_CPU_ALLOC(previousMask);
3233  KMP_CPU_ZERO(previousMask);
3234  int setSize = 0;
3235 
3236  for (;;) {
3237  __kmp_process_place(&scan, osId2Mask, maxOsId, tempMask, &setSize);
3238 
3239  // valid follow sets are ',' ':' and EOL
3240  SKIP_WS(scan);
3241  if (*scan == '\0' || *scan == ',') {
3242  if (setSize > 0) {
3243  ADD_MASK(tempMask);
3244  }
3245  KMP_CPU_ZERO(tempMask);
3246  setSize = 0;
3247  if (*scan == '\0') {
3248  break;
3249  }
3250  scan++; // skip ','
3251  continue;
3252  }
3253 
3254  KMP_ASSERT2(*scan == ':', "bad explicit places list");
3255  scan++; // skip ':'
3256 
3257  // Read count parameter
3258  SKIP_WS(scan);
3259  KMP_ASSERT2((*scan >= '0') && (*scan <= '9'), "bad explicit places list");
3260  next = scan;
3261  SKIP_DIGITS(next);
3262  count = __kmp_str_to_int(scan, *next);
3263  KMP_ASSERT(count >= 0);
3264  scan = next;
3265 
3266  // valid follow sets are ',' ':' and EOL
3267  SKIP_WS(scan);
3268  if (*scan == '\0' || *scan == ',') {
3269  stride = +1;
3270  } else {
3271  KMP_ASSERT2(*scan == ':', "bad explicit places list");
3272  scan++; // skip ':'
3273 
3274  // Read stride parameter
3275  sign = +1;
3276  for (;;) {
3277  SKIP_WS(scan);
3278  if (*scan == '+') {
3279  scan++; // skip '+'
3280  continue;
3281  }
3282  if (*scan == '-') {
3283  sign *= -1;
3284  scan++; // skip '-'
3285  continue;
3286  }
3287  break;
3288  }
3289  SKIP_WS(scan);
3290  KMP_ASSERT2((*scan >= '0') && (*scan <= '9'), "bad explicit places list");
3291  next = scan;
3292  SKIP_DIGITS(next);
3293  stride = __kmp_str_to_int(scan, *next);
3294  KMP_DEBUG_ASSERT(stride >= 0);
3295  scan = next;
3296  stride *= sign;
3297  }
3298 
3299  // Add places determined by initial_place : count : stride
3300  for (i = 0; i < count; i++) {
3301  if (setSize == 0) {
3302  break;
3303  }
3304  // Add the current place, then build the next place (tempMask) from that
3305  KMP_CPU_COPY(previousMask, tempMask);
3306  ADD_MASK(previousMask);
3307  KMP_CPU_ZERO(tempMask);
3308  setSize = 0;
3309  KMP_CPU_SET_ITERATE(j, previousMask) {
3310  if (!KMP_CPU_ISSET(j, previousMask)) {
3311  continue;
3312  }
3313  if ((j + stride > maxOsId) || (j + stride < 0) ||
3314  (!KMP_CPU_ISSET(j, __kmp_affin_fullMask)) ||
3315  (!KMP_CPU_ISSET(j + stride,
3316  KMP_CPU_INDEX(osId2Mask, j + stride)))) {
3317  if ((__kmp_affinity_verbose ||
3318  (__kmp_affinity_warnings &&
3319  (__kmp_affinity_type != affinity_none))) &&
3320  i < count - 1) {
3321  KMP_WARNING(AffIgnoreInvalidProcID, j + stride);
3322  }
3323  continue;
3324  }
3325  KMP_CPU_SET(j + stride, tempMask);
3326  setSize++;
3327  }
3328  }
3329  KMP_CPU_ZERO(tempMask);
3330  setSize = 0;
3331 
3332  // valid follow sets are ',' and EOL
3333  SKIP_WS(scan);
3334  if (*scan == '\0') {
3335  break;
3336  }
3337  if (*scan == ',') {
3338  scan++; // skip ','
3339  continue;
3340  }
3341 
3342  KMP_ASSERT2(0, "bad explicit places list");
3343  }
3344 
3345  *out_numMasks = nextNewMask;
3346  if (nextNewMask == 0) {
3347  *out_masks = NULL;
3348  KMP_CPU_INTERNAL_FREE_ARRAY(newMasks, numNewMasks);
3349  return;
3350  }
3351  KMP_CPU_ALLOC_ARRAY((*out_masks), nextNewMask);
3352  KMP_CPU_FREE(tempMask);
3353  KMP_CPU_FREE(previousMask);
3354  for (i = 0; i < nextNewMask; i++) {
3355  kmp_affin_mask_t *src = KMP_CPU_INDEX(newMasks, i);
3356  kmp_affin_mask_t *dest = KMP_CPU_INDEX((*out_masks), i);
3357  KMP_CPU_COPY(dest, src);
3358  }
3359  KMP_CPU_INTERNAL_FREE_ARRAY(newMasks, numNewMasks);
3360 }
3361 
3362 #undef ADD_MASK
3363 #undef ADD_MASK_OSID
3364 
3365 #if KMP_USE_HWLOC
3366 static int __kmp_hwloc_skip_PUs_obj(hwloc_topology_t t, hwloc_obj_t o) {
3367  // skip PUs descendants of the object o
3368  int skipped = 0;
3369  hwloc_obj_t hT = NULL;
3370  int N = __kmp_hwloc_count_children_by_type(t, o, HWLOC_OBJ_PU, &hT);
3371  for (int i = 0; i < N; ++i) {
3372  KMP_DEBUG_ASSERT(hT);
3373  unsigned idx = hT->os_index;
3374  if (KMP_CPU_ISSET(idx, __kmp_affin_fullMask)) {
3375  KMP_CPU_CLR(idx, __kmp_affin_fullMask);
3376  KC_TRACE(200, ("KMP_HW_SUBSET: skipped proc %d\n", idx));
3377  ++skipped;
3378  }
3379  hT = hwloc_get_next_obj_by_type(t, HWLOC_OBJ_PU, hT);
3380  }
3381  return skipped; // count number of skipped units
3382 }
3383 
3384 static int __kmp_hwloc_obj_has_PUs(hwloc_topology_t t, hwloc_obj_t o) {
3385  // check if obj has PUs present in fullMask
3386  hwloc_obj_t hT = NULL;
3387  int N = __kmp_hwloc_count_children_by_type(t, o, HWLOC_OBJ_PU, &hT);
3388  for (int i = 0; i < N; ++i) {
3389  KMP_DEBUG_ASSERT(hT);
3390  unsigned idx = hT->os_index;
3391  if (KMP_CPU_ISSET(idx, __kmp_affin_fullMask))
3392  return 1; // found PU
3393  hT = hwloc_get_next_obj_by_type(t, HWLOC_OBJ_PU, hT);
3394  }
3395  return 0; // no PUs found
3396 }
3397 #endif // KMP_USE_HWLOC
3398 
3399 static void __kmp_apply_thread_places(AddrUnsPair **pAddr, int depth) {
3400  AddrUnsPair *newAddr;
3401  if (__kmp_hws_requested == 0)
3402  goto _exit; // no topology limiting actions requested, exit
3403 #if KMP_USE_HWLOC
3404  if (__kmp_affinity_dispatch->get_api_type() == KMPAffinity::HWLOC) {
3405  // Number of subobjects calculated dynamically, this works fine for
3406  // any non-uniform topology.
3407  // L2 cache objects are determined by depth, other objects - by type.
3408  hwloc_topology_t tp = __kmp_hwloc_topology;
3409  int nS = 0, nN = 0, nL = 0, nC = 0,
3410  nT = 0; // logical index including skipped
3411  int nCr = 0, nTr = 0; // number of requested units
3412  int nPkg = 0, nCo = 0, n_new = 0, n_old = 0, nCpP = 0, nTpC = 0; // counters
3413  hwloc_obj_t hT, hC, hL, hN, hS; // hwloc objects (pointers to)
3414  int L2depth, idx;
3415 
3416  // check support of extensions ----------------------------------
3417  int numa_support = 0, tile_support = 0;
3418  if (__kmp_pu_os_idx)
3419  hT = hwloc_get_pu_obj_by_os_index(tp,
3420  __kmp_pu_os_idx[__kmp_avail_proc - 1]);
3421  else
3422  hT = hwloc_get_obj_by_type(tp, HWLOC_OBJ_PU, __kmp_avail_proc - 1);
3423  if (hT == NULL) { // something's gone wrong
3424  KMP_WARNING(AffHWSubsetUnsupported);
3425  goto _exit;
3426  }
3427  // check NUMA node
3428  hN = hwloc_get_ancestor_obj_by_type(tp, HWLOC_OBJ_NUMANODE, hT);
3429  hS = hwloc_get_ancestor_obj_by_type(tp, HWLOC_OBJ_PACKAGE, hT);
3430  if (hN != NULL && hN->depth > hS->depth) {
3431  numa_support = 1; // 1 in case socket includes node(s)
3432  } else if (__kmp_hws_node.num > 0) {
3433  // don't support sockets inside NUMA node (no such HW found for testing)
3434  KMP_WARNING(AffHWSubsetUnsupported);
3435  goto _exit;
3436  }
3437  // check L2 cahce, get object by depth because of multiple caches
3438  L2depth = hwloc_get_cache_type_depth(tp, 2, HWLOC_OBJ_CACHE_UNIFIED);
3439  hL = hwloc_get_ancestor_obj_by_depth(tp, L2depth, hT);
3440  if (hL != NULL &&
3441  __kmp_hwloc_count_children_by_type(tp, hL, HWLOC_OBJ_CORE, &hC) > 1) {
3442  tile_support = 1; // no sense to count L2 if it includes single core
3443  } else if (__kmp_hws_tile.num > 0) {
3444  if (__kmp_hws_core.num == 0) {
3445  __kmp_hws_core = __kmp_hws_tile; // replace L2 with core
3446  __kmp_hws_tile.num = 0;
3447  } else {
3448  // L2 and core are both requested, but represent same object
3449  KMP_WARNING(AffHWSubsetInvalid);
3450  goto _exit;
3451  }
3452  }
3453  // end of check of extensions -----------------------------------
3454 
3455  // fill in unset items, validate settings -----------------------
3456  if (__kmp_hws_socket.num == 0)
3457  __kmp_hws_socket.num = nPackages; // use all available sockets
3458  if (__kmp_hws_socket.offset >= nPackages) {
3459  KMP_WARNING(AffHWSubsetManySockets);
3460  goto _exit;
3461  }
3462  if (numa_support) {
3463  hN = NULL;
3464  int NN = __kmp_hwloc_count_children_by_type(tp, hS, HWLOC_OBJ_NUMANODE,
3465  &hN); // num nodes in socket
3466  if (__kmp_hws_node.num == 0)
3467  __kmp_hws_node.num = NN; // use all available nodes
3468  if (__kmp_hws_node.offset >= NN) {
3469  KMP_WARNING(AffHWSubsetManyNodes);
3470  goto _exit;
3471  }
3472  if (tile_support) {
3473  // get num tiles in node
3474  int NL = __kmp_hwloc_count_children_by_depth(tp, hN, L2depth, &hL);
3475  if (__kmp_hws_tile.num == 0) {
3476  __kmp_hws_tile.num = NL + 1;
3477  } // use all available tiles, some node may have more tiles, thus +1
3478  if (__kmp_hws_tile.offset >= NL) {
3479  KMP_WARNING(AffHWSubsetManyTiles);
3480  goto _exit;
3481  }
3482  int NC = __kmp_hwloc_count_children_by_type(tp, hL, HWLOC_OBJ_CORE,
3483  &hC); // num cores in tile
3484  if (__kmp_hws_core.num == 0)
3485  __kmp_hws_core.num = NC; // use all available cores
3486  if (__kmp_hws_core.offset >= NC) {
3487  KMP_WARNING(AffHWSubsetManyCores);
3488  goto _exit;
3489  }
3490  } else { // tile_support
3491  int NC = __kmp_hwloc_count_children_by_type(tp, hN, HWLOC_OBJ_CORE,
3492  &hC); // num cores in node
3493  if (__kmp_hws_core.num == 0)
3494  __kmp_hws_core.num = NC; // use all available cores
3495  if (__kmp_hws_core.offset >= NC) {
3496  KMP_WARNING(AffHWSubsetManyCores);
3497  goto _exit;
3498  }
3499  } // tile_support
3500  } else { // numa_support
3501  if (tile_support) {
3502  // get num tiles in socket
3503  int NL = __kmp_hwloc_count_children_by_depth(tp, hS, L2depth, &hL);
3504  if (__kmp_hws_tile.num == 0)
3505  __kmp_hws_tile.num = NL; // use all available tiles
3506  if (__kmp_hws_tile.offset >= NL) {
3507  KMP_WARNING(AffHWSubsetManyTiles);
3508  goto _exit;
3509  }
3510  int NC = __kmp_hwloc_count_children_by_type(tp, hL, HWLOC_OBJ_CORE,
3511  &hC); // num cores in tile
3512  if (__kmp_hws_core.num == 0)
3513  __kmp_hws_core.num = NC; // use all available cores
3514  if (__kmp_hws_core.offset >= NC) {
3515  KMP_WARNING(AffHWSubsetManyCores);
3516  goto _exit;
3517  }
3518  } else { // tile_support
3519  int NC = __kmp_hwloc_count_children_by_type(tp, hS, HWLOC_OBJ_CORE,
3520  &hC); // num cores in socket
3521  if (__kmp_hws_core.num == 0)
3522  __kmp_hws_core.num = NC; // use all available cores
3523  if (__kmp_hws_core.offset >= NC) {
3524  KMP_WARNING(AffHWSubsetManyCores);
3525  goto _exit;
3526  }
3527  } // tile_support
3528  }
3529  if (__kmp_hws_proc.num == 0)
3530  __kmp_hws_proc.num = __kmp_nThreadsPerCore; // use all available procs
3531  if (__kmp_hws_proc.offset >= __kmp_nThreadsPerCore) {
3532  KMP_WARNING(AffHWSubsetManyProcs);
3533  goto _exit;
3534  }
3535  // end of validation --------------------------------------------
3536 
3537  if (pAddr) // pAddr is NULL in case of affinity_none
3538  newAddr = (AddrUnsPair *)__kmp_allocate(sizeof(AddrUnsPair) *
3539  __kmp_avail_proc); // max size
3540  // main loop to form HW subset ----------------------------------
3541  hS = NULL;
3542  int NP = hwloc_get_nbobjs_by_type(tp, HWLOC_OBJ_PACKAGE);
3543  for (int s = 0; s < NP; ++s) {
3544  // Check Socket -----------------------------------------------
3545  hS = hwloc_get_next_obj_by_type(tp, HWLOC_OBJ_PACKAGE, hS);
3546  if (!__kmp_hwloc_obj_has_PUs(tp, hS))
3547  continue; // skip socket if all PUs are out of fullMask
3548  ++nS; // only count objects those have PUs in affinity mask
3549  if (nS <= __kmp_hws_socket.offset ||
3550  nS > __kmp_hws_socket.num + __kmp_hws_socket.offset) {
3551  n_old += __kmp_hwloc_skip_PUs_obj(tp, hS); // skip socket
3552  continue; // move to next socket
3553  }
3554  nCr = 0; // count number of cores per socket
3555  // socket requested, go down the topology tree
3556  // check 4 cases: (+NUMA+Tile), (+NUMA-Tile), (-NUMA+Tile), (-NUMA-Tile)
3557  if (numa_support) {
3558  nN = 0;
3559  hN = NULL;
3560  // num nodes in current socket
3561  int NN =
3562  __kmp_hwloc_count_children_by_type(tp, hS, HWLOC_OBJ_NUMANODE, &hN);
3563  for (int n = 0; n < NN; ++n) {
3564  // Check NUMA Node ----------------------------------------
3565  if (!__kmp_hwloc_obj_has_PUs(tp, hN)) {
3566  hN = hwloc_get_next_obj_by_type(tp, HWLOC_OBJ_NUMANODE, hN);
3567  continue; // skip node if all PUs are out of fullMask
3568  }
3569  ++nN;
3570  if (nN <= __kmp_hws_node.offset ||
3571  nN > __kmp_hws_node.num + __kmp_hws_node.offset) {
3572  // skip node as not requested
3573  n_old += __kmp_hwloc_skip_PUs_obj(tp, hN); // skip node
3574  hN = hwloc_get_next_obj_by_type(tp, HWLOC_OBJ_NUMANODE, hN);
3575  continue; // move to next node
3576  }
3577  // node requested, go down the topology tree
3578  if (tile_support) {
3579  nL = 0;
3580  hL = NULL;
3581  int NL = __kmp_hwloc_count_children_by_depth(tp, hN, L2depth, &hL);
3582  for (int l = 0; l < NL; ++l) {
3583  // Check L2 (tile) ------------------------------------
3584  if (!__kmp_hwloc_obj_has_PUs(tp, hL)) {
3585  hL = hwloc_get_next_obj_by_depth(tp, L2depth, hL);
3586  continue; // skip tile if all PUs are out of fullMask
3587  }
3588  ++nL;
3589  if (nL <= __kmp_hws_tile.offset ||
3590  nL > __kmp_hws_tile.num + __kmp_hws_tile.offset) {
3591  // skip tile as not requested
3592  n_old += __kmp_hwloc_skip_PUs_obj(tp, hL); // skip tile
3593  hL = hwloc_get_next_obj_by_depth(tp, L2depth, hL);
3594  continue; // move to next tile
3595  }
3596  // tile requested, go down the topology tree
3597  nC = 0;
3598  hC = NULL;
3599  // num cores in current tile
3600  int NC = __kmp_hwloc_count_children_by_type(tp, hL,
3601  HWLOC_OBJ_CORE, &hC);
3602  for (int c = 0; c < NC; ++c) {
3603  // Check Core ---------------------------------------
3604  if (!__kmp_hwloc_obj_has_PUs(tp, hC)) {
3605  hC = hwloc_get_next_obj_by_type(tp, HWLOC_OBJ_CORE, hC);
3606  continue; // skip core if all PUs are out of fullMask
3607  }
3608  ++nC;
3609  if (nC <= __kmp_hws_core.offset ||
3610  nC > __kmp_hws_core.num + __kmp_hws_core.offset) {
3611  // skip node as not requested
3612  n_old += __kmp_hwloc_skip_PUs_obj(tp, hC); // skip core
3613  hC = hwloc_get_next_obj_by_type(tp, HWLOC_OBJ_CORE, hC);
3614  continue; // move to next node
3615  }
3616  // core requested, go down to PUs
3617  nT = 0;
3618  nTr = 0;
3619  hT = NULL;
3620  // num procs in current core
3621  int NT = __kmp_hwloc_count_children_by_type(tp, hC,
3622  HWLOC_OBJ_PU, &hT);
3623  for (int t = 0; t < NT; ++t) {
3624  // Check PU ---------------------------------------
3625  idx = hT->os_index;
3626  if (!KMP_CPU_ISSET(idx, __kmp_affin_fullMask)) {
3627  hT = hwloc_get_next_obj_by_type(tp, HWLOC_OBJ_PU, hT);
3628  continue; // skip PU if not in fullMask
3629  }
3630  ++nT;
3631  if (nT <= __kmp_hws_proc.offset ||
3632  nT > __kmp_hws_proc.num + __kmp_hws_proc.offset) {
3633  // skip PU
3634  KMP_CPU_CLR(idx, __kmp_affin_fullMask);
3635  ++n_old;
3636  KC_TRACE(200, ("KMP_HW_SUBSET: skipped proc %d\n", idx));
3637  hT = hwloc_get_next_obj_by_type(tp, HWLOC_OBJ_PU, hT);
3638  continue; // move to next node
3639  }
3640  ++nTr;
3641  if (pAddr) // collect requested thread's data
3642  newAddr[n_new] = (*pAddr)[n_old];
3643  ++n_new;
3644  ++n_old;
3645  hT = hwloc_get_next_obj_by_type(tp, HWLOC_OBJ_PU, hT);
3646  } // threads loop
3647  if (nTr > 0) {
3648  ++nCr; // num cores per socket
3649  ++nCo; // total num cores
3650  if (nTr > nTpC)
3651  nTpC = nTr; // calc max threads per core
3652  }
3653  hC = hwloc_get_next_obj_by_type(tp, HWLOC_OBJ_CORE, hC);
3654  } // cores loop
3655  hL = hwloc_get_next_obj_by_depth(tp, L2depth, hL);
3656  } // tiles loop
3657  } else { // tile_support
3658  // no tiles, check cores
3659  nC = 0;
3660  hC = NULL;
3661  // num cores in current node
3662  int NC =
3663  __kmp_hwloc_count_children_by_type(tp, hN, HWLOC_OBJ_CORE, &hC);
3664  for (int c = 0; c < NC; ++c) {
3665  // Check Core ---------------------------------------
3666  if (!__kmp_hwloc_obj_has_PUs(tp, hC)) {
3667  hC = hwloc_get_next_obj_by_type(tp, HWLOC_OBJ_CORE, hC);
3668  continue; // skip core if all PUs are out of fullMask
3669  }
3670  ++nC;
3671  if (nC <= __kmp_hws_core.offset ||
3672  nC > __kmp_hws_core.num + __kmp_hws_core.offset) {
3673  // skip node as not requested
3674  n_old += __kmp_hwloc_skip_PUs_obj(tp, hC); // skip core
3675  hC = hwloc_get_next_obj_by_type(tp, HWLOC_OBJ_CORE, hC);
3676  continue; // move to next node
3677  }
3678  // core requested, go down to PUs
3679  nT = 0;
3680  nTr = 0;
3681  hT = NULL;
3682  int NT =
3683  __kmp_hwloc_count_children_by_type(tp, hC, HWLOC_OBJ_PU, &hT);
3684  for (int t = 0; t < NT; ++t) {
3685  // Check PU ---------------------------------------
3686  idx = hT->os_index;
3687  if (!KMP_CPU_ISSET(idx, __kmp_affin_fullMask)) {
3688  hT = hwloc_get_next_obj_by_type(tp, HWLOC_OBJ_PU, hT);
3689  continue; // skip PU if not in fullMask
3690  }
3691  ++nT;
3692  if (nT <= __kmp_hws_proc.offset ||
3693  nT > __kmp_hws_proc.num + __kmp_hws_proc.offset) {
3694  // skip PU
3695  KMP_CPU_CLR(idx, __kmp_affin_fullMask);
3696  ++n_old;
3697  KC_TRACE(200, ("KMP_HW_SUBSET: skipped proc %d\n", idx));
3698  hT = hwloc_get_next_obj_by_type(tp, HWLOC_OBJ_PU, hT);
3699  continue; // move to next node
3700  }
3701  ++nTr;
3702  if (pAddr) // collect requested thread's data
3703  newAddr[n_new] = (*pAddr)[n_old];
3704  ++n_new;
3705  ++n_old;
3706  hT = hwloc_get_next_obj_by_type(tp, HWLOC_OBJ_PU, hT);
3707  } // threads loop
3708  if (nTr > 0) {
3709  ++nCr; // num cores per socket
3710  ++nCo; // total num cores
3711  if (nTr > nTpC)
3712  nTpC = nTr; // calc max threads per core
3713  }
3714  hC = hwloc_get_next_obj_by_type(tp, HWLOC_OBJ_CORE, hC);
3715  } // cores loop
3716  } // tiles support
3717  hN = hwloc_get_next_obj_by_type(tp, HWLOC_OBJ_NUMANODE, hN);
3718  } // nodes loop
3719  } else { // numa_support
3720  // no NUMA support
3721  if (tile_support) {
3722  nL = 0;
3723  hL = NULL;
3724  // num tiles in current socket
3725  int NL = __kmp_hwloc_count_children_by_depth(tp, hS, L2depth, &hL);
3726  for (int l = 0; l < NL; ++l) {
3727  // Check L2 (tile) ------------------------------------
3728  if (!__kmp_hwloc_obj_has_PUs(tp, hL)) {
3729  hL = hwloc_get_next_obj_by_depth(tp, L2depth, hL);
3730  continue; // skip tile if all PUs are out of fullMask
3731  }
3732  ++nL;
3733  if (nL <= __kmp_hws_tile.offset ||
3734  nL > __kmp_hws_tile.num + __kmp_hws_tile.offset) {
3735  // skip tile as not requested
3736  n_old += __kmp_hwloc_skip_PUs_obj(tp, hL); // skip tile
3737  hL = hwloc_get_next_obj_by_depth(tp, L2depth, hL);
3738  continue; // move to next tile
3739  }
3740  // tile requested, go down the topology tree
3741  nC = 0;
3742  hC = NULL;
3743  // num cores per tile
3744  int NC =
3745  __kmp_hwloc_count_children_by_type(tp, hL, HWLOC_OBJ_CORE, &hC);
3746  for (int c = 0; c < NC; ++c) {
3747  // Check Core ---------------------------------------
3748  if (!__kmp_hwloc_obj_has_PUs(tp, hC)) {
3749  hC = hwloc_get_next_obj_by_type(tp, HWLOC_OBJ_CORE, hC);
3750  continue; // skip core if all PUs are out of fullMask
3751  }
3752  ++nC;
3753  if (nC <= __kmp_hws_core.offset ||
3754  nC > __kmp_hws_core.num + __kmp_hws_core.offset) {
3755  // skip node as not requested
3756  n_old += __kmp_hwloc_skip_PUs_obj(tp, hC); // skip core
3757  hC = hwloc_get_next_obj_by_type(tp, HWLOC_OBJ_CORE, hC);
3758  continue; // move to next node
3759  }
3760  // core requested, go down to PUs
3761  nT = 0;
3762  nTr = 0;
3763  hT = NULL;
3764  // num procs per core
3765  int NT =
3766  __kmp_hwloc_count_children_by_type(tp, hC, HWLOC_OBJ_PU, &hT);
3767  for (int t = 0; t < NT; ++t) {
3768  // Check PU ---------------------------------------
3769  idx = hT->os_index;
3770  if (!KMP_CPU_ISSET(idx, __kmp_affin_fullMask)) {
3771  hT = hwloc_get_next_obj_by_type(tp, HWLOC_OBJ_PU, hT);
3772  continue; // skip PU if not in fullMask
3773  }
3774  ++nT;
3775  if (nT <= __kmp_hws_proc.offset ||
3776  nT > __kmp_hws_proc.num + __kmp_hws_proc.offset) {
3777  // skip PU
3778  KMP_CPU_CLR(idx, __kmp_affin_fullMask);
3779  ++n_old;
3780  KC_TRACE(200, ("KMP_HW_SUBSET: skipped proc %d\n", idx));
3781  hT = hwloc_get_next_obj_by_type(tp, HWLOC_OBJ_PU, hT);
3782  continue; // move to next node
3783  }
3784  ++nTr;
3785  if (pAddr) // collect requested thread's data
3786  newAddr[n_new] = (*pAddr)[n_old];
3787  ++n_new;
3788  ++n_old;
3789  hT = hwloc_get_next_obj_by_type(tp, HWLOC_OBJ_PU, hT);
3790  } // threads loop
3791  if (nTr > 0) {
3792  ++nCr; // num cores per socket
3793  ++nCo; // total num cores
3794  if (nTr > nTpC)
3795  nTpC = nTr; // calc max threads per core
3796  }
3797  hC = hwloc_get_next_obj_by_type(tp, HWLOC_OBJ_CORE, hC);
3798  } // cores loop
3799  hL = hwloc_get_next_obj_by_depth(tp, L2depth, hL);
3800  } // tiles loop
3801  } else { // tile_support
3802  // no tiles, check cores
3803  nC = 0;
3804  hC = NULL;
3805  // num cores in socket
3806  int NC =
3807  __kmp_hwloc_count_children_by_type(tp, hS, HWLOC_OBJ_CORE, &hC);
3808  for (int c = 0; c < NC; ++c) {
3809  // Check Core -------------------------------------------
3810  if (!__kmp_hwloc_obj_has_PUs(tp, hC)) {
3811  hC = hwloc_get_next_obj_by_type(tp, HWLOC_OBJ_CORE, hC);
3812  continue; // skip core if all PUs are out of fullMask
3813  }
3814  ++nC;
3815  if (nC <= __kmp_hws_core.offset ||
3816  nC > __kmp_hws_core.num + __kmp_hws_core.offset) {
3817  // skip node as not requested
3818  n_old += __kmp_hwloc_skip_PUs_obj(tp, hC); // skip core
3819  hC = hwloc_get_next_obj_by_type(tp, HWLOC_OBJ_CORE, hC);
3820  continue; // move to next node
3821  }
3822  // core requested, go down to PUs
3823  nT = 0;
3824  nTr = 0;
3825  hT = NULL;
3826  // num procs per core
3827  int NT =
3828  __kmp_hwloc_count_children_by_type(tp, hC, HWLOC_OBJ_PU, &hT);
3829  for (int t = 0; t < NT; ++t) {
3830  // Check PU ---------------------------------------
3831  idx = hT->os_index;
3832  if (!KMP_CPU_ISSET(idx, __kmp_affin_fullMask)) {
3833  hT = hwloc_get_next_obj_by_type(tp, HWLOC_OBJ_PU, hT);
3834  continue; // skip PU if not in fullMask
3835  }
3836  ++nT;
3837  if (nT <= __kmp_hws_proc.offset ||
3838  nT > __kmp_hws_proc.num + __kmp_hws_proc.offset) {
3839  // skip PU
3840  KMP_CPU_CLR(idx, __kmp_affin_fullMask);
3841  ++n_old;
3842  KC_TRACE(200, ("KMP_HW_SUBSET: skipped proc %d\n", idx));
3843  hT = hwloc_get_next_obj_by_type(tp, HWLOC_OBJ_PU, hT);
3844  continue; // move to next node
3845  }
3846  ++nTr;
3847  if (pAddr) // collect requested thread's data
3848  newAddr[n_new] = (*pAddr)[n_old];
3849  ++n_new;
3850  ++n_old;
3851  hT = hwloc_get_next_obj_by_type(tp, HWLOC_OBJ_PU, hT);
3852  } // threads loop
3853  if (nTr > 0) {
3854  ++nCr; // num cores per socket
3855  ++nCo; // total num cores
3856  if (nTr > nTpC)
3857  nTpC = nTr; // calc max threads per core
3858  }
3859  hC = hwloc_get_next_obj_by_type(tp, HWLOC_OBJ_CORE, hC);
3860  } // cores loop
3861  } // tiles support
3862  } // numa_support
3863  if (nCr > 0) { // found cores?
3864  ++nPkg; // num sockets
3865  if (nCr > nCpP)
3866  nCpP = nCr; // calc max cores per socket
3867  }
3868  } // sockets loop
3869 
3870  // check the subset is valid
3871  KMP_DEBUG_ASSERT(n_old == __kmp_avail_proc);
3872  KMP_DEBUG_ASSERT(nPkg > 0);
3873  KMP_DEBUG_ASSERT(nCpP > 0);
3874  KMP_DEBUG_ASSERT(nTpC > 0);
3875  KMP_DEBUG_ASSERT(nCo > 0);
3876  KMP_DEBUG_ASSERT(nPkg <= nPackages);
3877  KMP_DEBUG_ASSERT(nCpP <= nCoresPerPkg);
3878  KMP_DEBUG_ASSERT(nTpC <= __kmp_nThreadsPerCore);
3879  KMP_DEBUG_ASSERT(nCo <= __kmp_ncores);
3880 
3881  nPackages = nPkg; // correct num sockets
3882  nCoresPerPkg = nCpP; // correct num cores per socket
3883  __kmp_nThreadsPerCore = nTpC; // correct num threads per core
3884  __kmp_avail_proc = n_new; // correct num procs
3885  __kmp_ncores = nCo; // correct num cores
3886  // hwloc topology method end
3887  } else
3888 #endif // KMP_USE_HWLOC
3889  {
3890  int n_old = 0, n_new = 0, proc_num = 0;
3891  if (__kmp_hws_node.num > 0 || __kmp_hws_tile.num > 0) {
3892  KMP_WARNING(AffHWSubsetNoHWLOC);
3893  goto _exit;
3894  }
3895  if (__kmp_hws_socket.num == 0)
3896  __kmp_hws_socket.num = nPackages; // use all available sockets
3897  if (__kmp_hws_core.num == 0)
3898  __kmp_hws_core.num = nCoresPerPkg; // use all available cores
3899  if (__kmp_hws_proc.num == 0 || __kmp_hws_proc.num > __kmp_nThreadsPerCore)
3900  __kmp_hws_proc.num = __kmp_nThreadsPerCore; // use all HW contexts
3901  if (!__kmp_affinity_uniform_topology()) {
3902  KMP_WARNING(AffHWSubsetNonUniform);
3903  goto _exit; // don't support non-uniform topology
3904  }
3905  if (depth > 3) {
3906  KMP_WARNING(AffHWSubsetNonThreeLevel);
3907  goto _exit; // don't support not-3-level topology
3908  }
3909  if (__kmp_hws_socket.offset + __kmp_hws_socket.num > nPackages) {
3910  KMP_WARNING(AffHWSubsetManySockets);
3911  goto _exit;
3912  }
3913  if (__kmp_hws_core.offset + __kmp_hws_core.num > nCoresPerPkg) {
3914  KMP_WARNING(AffHWSubsetManyCores);
3915  goto _exit;
3916  }
3917  // Form the requested subset
3918  if (pAddr) // pAddr is NULL in case of affinity_none
3919  newAddr = (AddrUnsPair *)__kmp_allocate(
3920  sizeof(AddrUnsPair) * __kmp_hws_socket.num * __kmp_hws_core.num *
3921  __kmp_hws_proc.num);
3922  for (int i = 0; i < nPackages; ++i) {
3923  if (i < __kmp_hws_socket.offset ||
3924  i >= __kmp_hws_socket.offset + __kmp_hws_socket.num) {
3925  // skip not-requested socket
3926  n_old += nCoresPerPkg * __kmp_nThreadsPerCore;
3927  if (__kmp_pu_os_idx != NULL) {
3928  // walk through skipped socket
3929  for (int j = 0; j < nCoresPerPkg; ++j) {
3930  for (int k = 0; k < __kmp_nThreadsPerCore; ++k) {
3931  KMP_CPU_CLR(__kmp_pu_os_idx[proc_num], __kmp_affin_fullMask);
3932  ++proc_num;
3933  }
3934  }
3935  }
3936  } else {
3937  // walk through requested socket
3938  for (int j = 0; j < nCoresPerPkg; ++j) {
3939  if (j < __kmp_hws_core.offset ||
3940  j >= __kmp_hws_core.offset +
3941  __kmp_hws_core.num) { // skip not-requested core
3942  n_old += __kmp_nThreadsPerCore;
3943  if (__kmp_pu_os_idx != NULL) {
3944  for (int k = 0; k < __kmp_nThreadsPerCore; ++k) {
3945  KMP_CPU_CLR(__kmp_pu_os_idx[proc_num], __kmp_affin_fullMask);
3946  ++proc_num;
3947  }
3948  }
3949  } else {
3950  // walk through requested core
3951  for (int k = 0; k < __kmp_nThreadsPerCore; ++k) {
3952  if (k < __kmp_hws_proc.num) {
3953  if (pAddr) // collect requested thread's data
3954  newAddr[n_new] = (*pAddr)[n_old];
3955  n_new++;
3956  } else {
3957  if (__kmp_pu_os_idx != NULL)
3958  KMP_CPU_CLR(__kmp_pu_os_idx[proc_num], __kmp_affin_fullMask);
3959  }
3960  n_old++;
3961  ++proc_num;
3962  }
3963  }
3964  }
3965  }
3966  }
3967  KMP_DEBUG_ASSERT(n_old == nPackages * nCoresPerPkg * __kmp_nThreadsPerCore);
3968  KMP_DEBUG_ASSERT(n_new ==
3969  __kmp_hws_socket.num * __kmp_hws_core.num *
3970  __kmp_hws_proc.num);
3971  nPackages = __kmp_hws_socket.num; // correct nPackages
3972  nCoresPerPkg = __kmp_hws_core.num; // correct nCoresPerPkg
3973  __kmp_nThreadsPerCore = __kmp_hws_proc.num; // correct __kmp_nThreadsPerCore
3974  __kmp_avail_proc = n_new; // correct avail_proc
3975  __kmp_ncores = nPackages * __kmp_hws_core.num; // correct ncores
3976  } // non-hwloc topology method
3977  if (pAddr) {
3978  __kmp_free(*pAddr);
3979  *pAddr = newAddr; // replace old topology with new one
3980  }
3981  if (__kmp_affinity_verbose) {
3982  char m[KMP_AFFIN_MASK_PRINT_LEN];
3983  __kmp_affinity_print_mask(m, KMP_AFFIN_MASK_PRINT_LEN,
3984  __kmp_affin_fullMask);
3985  if (__kmp_affinity_respect_mask) {
3986  KMP_INFORM(InitOSProcSetRespect, "KMP_HW_SUBSET", m);
3987  } else {
3988  KMP_INFORM(InitOSProcSetNotRespect, "KMP_HW_SUBSET", m);
3989  }
3990  KMP_INFORM(AvailableOSProc, "KMP_HW_SUBSET", __kmp_avail_proc);
3991  kmp_str_buf_t buf;
3992  __kmp_str_buf_init(&buf);
3993  __kmp_str_buf_print(&buf, "%d", nPackages);
3994  KMP_INFORM(TopologyExtra, "KMP_HW_SUBSET", buf.str, nCoresPerPkg,
3995  __kmp_nThreadsPerCore, __kmp_ncores);
3996  __kmp_str_buf_free(&buf);
3997  }
3998 _exit:
3999  if (__kmp_pu_os_idx != NULL) {
4000  __kmp_free(__kmp_pu_os_idx);
4001  __kmp_pu_os_idx = NULL;
4002  }
4003 }
4004 
4005 // This function figures out the deepest level at which there is at least one
4006 // cluster/core with more than one processing unit bound to it.
4007 static int __kmp_affinity_find_core_level(const AddrUnsPair *address2os,
4008  int nprocs, int bottom_level) {
4009  int core_level = 0;
4010 
4011  for (int i = 0; i < nprocs; i++) {
4012  for (int j = bottom_level; j > 0; j--) {
4013  if (address2os[i].first.labels[j] > 0) {
4014  if (core_level < (j - 1)) {
4015  core_level = j - 1;
4016  }
4017  }
4018  }
4019  }
4020  return core_level;
4021 }
4022 
4023 // This function counts number of clusters/cores at given level.
4024 static int __kmp_affinity_compute_ncores(const AddrUnsPair *address2os,
4025  int nprocs, int bottom_level,
4026  int core_level) {
4027  int ncores = 0;
4028  int i, j;
4029 
4030  j = bottom_level;
4031  for (i = 0; i < nprocs; i++) {
4032  for (j = bottom_level; j > core_level; j--) {
4033  if ((i + 1) < nprocs) {
4034  if (address2os[i + 1].first.labels[j] > 0) {
4035  break;
4036  }
4037  }
4038  }
4039  if (j == core_level) {
4040  ncores++;
4041  }
4042  }
4043  if (j > core_level) {
4044  // In case of ( nprocs < __kmp_avail_proc ) we may end too deep and miss one
4045  // core. May occur when called from __kmp_affinity_find_core().
4046  ncores++;
4047  }
4048  return ncores;
4049 }
4050 
4051 // This function finds to which cluster/core given processing unit is bound.
4052 static int __kmp_affinity_find_core(const AddrUnsPair *address2os, int proc,
4053  int bottom_level, int core_level) {
4054  return __kmp_affinity_compute_ncores(address2os, proc + 1, bottom_level,
4055  core_level) -
4056  1;
4057 }
4058 
4059 // This function finds maximal number of processing units bound to a
4060 // cluster/core at given level.
4061 static int __kmp_affinity_max_proc_per_core(const AddrUnsPair *address2os,
4062  int nprocs, int bottom_level,
4063  int core_level) {
4064  int maxprocpercore = 0;
4065 
4066  if (core_level < bottom_level) {
4067  for (int i = 0; i < nprocs; i++) {
4068  int percore = address2os[i].first.labels[core_level + 1] + 1;
4069 
4070  if (percore > maxprocpercore) {
4071  maxprocpercore = percore;
4072  }
4073  }
4074  } else {
4075  maxprocpercore = 1;
4076  }
4077  return maxprocpercore;
4078 }
4079 
4080 static AddrUnsPair *address2os = NULL;
4081 static int *procarr = NULL;
4082 static int __kmp_aff_depth = 0;
4083 
4084 #if KMP_USE_HIER_SCHED
4085 #define KMP_EXIT_AFF_NONE \
4086  KMP_ASSERT(__kmp_affinity_type == affinity_none); \
4087  KMP_ASSERT(address2os == NULL); \
4088  __kmp_apply_thread_places(NULL, 0); \
4089  __kmp_create_affinity_none_places(); \
4090  __kmp_dispatch_set_hierarchy_values(); \
4091  return;
4092 #else
4093 #define KMP_EXIT_AFF_NONE \
4094  KMP_ASSERT(__kmp_affinity_type == affinity_none); \
4095  KMP_ASSERT(address2os == NULL); \
4096  __kmp_apply_thread_places(NULL, 0); \
4097  __kmp_create_affinity_none_places(); \
4098  return;
4099 #endif
4100 
4101 // Create a one element mask array (set of places) which only contains the
4102 // initial process's affinity mask
4103 static void __kmp_create_affinity_none_places() {
4104  KMP_ASSERT(__kmp_affin_fullMask != NULL);
4105  KMP_ASSERT(__kmp_affinity_type == affinity_none);
4106  __kmp_affinity_num_masks = 1;
4107  KMP_CPU_ALLOC_ARRAY(__kmp_affinity_masks, __kmp_affinity_num_masks);
4108  kmp_affin_mask_t *dest = KMP_CPU_INDEX(__kmp_affinity_masks, 0);
4109  KMP_CPU_COPY(dest, __kmp_affin_fullMask);
4110 }
4111 
4112 static int __kmp_affinity_cmp_Address_child_num(const void *a, const void *b) {
4113  const Address *aa = &(((const AddrUnsPair *)a)->first);
4114  const Address *bb = &(((const AddrUnsPair *)b)->first);
4115  unsigned depth = aa->depth;
4116  unsigned i;
4117  KMP_DEBUG_ASSERT(depth == bb->depth);
4118  KMP_DEBUG_ASSERT((unsigned)__kmp_affinity_compact <= depth);
4119  KMP_DEBUG_ASSERT(__kmp_affinity_compact >= 0);
4120  for (i = 0; i < (unsigned)__kmp_affinity_compact; i++) {
4121  int j = depth - i - 1;
4122  if (aa->childNums[j] < bb->childNums[j])
4123  return -1;
4124  if (aa->childNums[j] > bb->childNums[j])
4125  return 1;
4126  }
4127  for (; i < depth; i++) {
4128  int j = i - __kmp_affinity_compact;
4129  if (aa->childNums[j] < bb->childNums[j])
4130  return -1;
4131  if (aa->childNums[j] > bb->childNums[j])
4132  return 1;
4133  }
4134  return 0;
4135 }
4136 
4137 static void __kmp_aux_affinity_initialize(void) {
4138  if (__kmp_affinity_masks != NULL) {
4139  KMP_ASSERT(__kmp_affin_fullMask != NULL);
4140  return;
4141  }
4142 
4143  // Create the "full" mask - this defines all of the processors that we
4144  // consider to be in the machine model. If respect is set, then it is the
4145  // initialization thread's affinity mask. Otherwise, it is all processors that
4146  // we know about on the machine.
4147  if (__kmp_affin_fullMask == NULL) {
4148  KMP_CPU_ALLOC(__kmp_affin_fullMask);
4149  }
4150  if (KMP_AFFINITY_CAPABLE()) {
4151  if (__kmp_affinity_respect_mask) {
4152  __kmp_get_system_affinity(__kmp_affin_fullMask, TRUE);
4153 
4154  // Count the number of available processors.
4155  unsigned i;
4156  __kmp_avail_proc = 0;
4157  KMP_CPU_SET_ITERATE(i, __kmp_affin_fullMask) {
4158  if (!KMP_CPU_ISSET(i, __kmp_affin_fullMask)) {
4159  continue;
4160  }
4161  __kmp_avail_proc++;
4162  }
4163  if (__kmp_avail_proc > __kmp_xproc) {
4164  if (__kmp_affinity_verbose ||
4165  (__kmp_affinity_warnings &&
4166  (__kmp_affinity_type != affinity_none))) {
4167  KMP_WARNING(ErrorInitializeAffinity);
4168  }
4169  __kmp_affinity_type = affinity_none;
4170  KMP_AFFINITY_DISABLE();
4171  return;
4172  }
4173  } else {
4174  __kmp_affinity_entire_machine_mask(__kmp_affin_fullMask);
4175  __kmp_avail_proc = __kmp_xproc;
4176  }
4177  }
4178 
4179  if (__kmp_affinity_gran == affinity_gran_tile &&
4180  // check if user's request is valid
4181  __kmp_affinity_dispatch->get_api_type() == KMPAffinity::NATIVE_OS) {
4182  KMP_WARNING(AffTilesNoHWLOC, "KMP_AFFINITY");
4183  __kmp_affinity_gran = affinity_gran_package;
4184  }
4185 
4186  int depth = -1;
4187  kmp_i18n_id_t msg_id = kmp_i18n_null;
4188 
4189  // For backward compatibility, setting KMP_CPUINFO_FILE =>
4190  // KMP_TOPOLOGY_METHOD=cpuinfo
4191  if ((__kmp_cpuinfo_file != NULL) &&
4192  (__kmp_affinity_top_method == affinity_top_method_all)) {
4193  __kmp_affinity_top_method = affinity_top_method_cpuinfo;
4194  }
4195 
4196  if (__kmp_affinity_top_method == affinity_top_method_all) {
4197  // In the default code path, errors are not fatal - we just try using
4198  // another method. We only emit a warning message if affinity is on, or the
4199  // verbose flag is set, and the nowarnings flag was not set.
4200  const char *file_name = NULL;
4201  int line = 0;
4202 #if KMP_USE_HWLOC
4203  if (depth < 0 &&
4204  __kmp_affinity_dispatch->get_api_type() == KMPAffinity::HWLOC) {
4205  if (__kmp_affinity_verbose) {
4206  KMP_INFORM(AffUsingHwloc, "KMP_AFFINITY");
4207  }
4208  if (!__kmp_hwloc_error) {
4209  depth = __kmp_affinity_create_hwloc_map(&address2os, &msg_id);
4210  if (depth == 0) {
4211  KMP_EXIT_AFF_NONE;
4212  } else if (depth < 0 && __kmp_affinity_verbose) {
4213  KMP_INFORM(AffIgnoringHwloc, "KMP_AFFINITY");
4214  }
4215  } else if (__kmp_affinity_verbose) {
4216  KMP_INFORM(AffIgnoringHwloc, "KMP_AFFINITY");
4217  }
4218  }
4219 #endif
4220 
4221 #if KMP_ARCH_X86 || KMP_ARCH_X86_64
4222 
4223  if (depth < 0) {
4224  if (__kmp_affinity_verbose) {
4225  KMP_INFORM(AffInfoStr, "KMP_AFFINITY", KMP_I18N_STR(Decodingx2APIC));
4226  }
4227 
4228  file_name = NULL;
4229  depth = __kmp_affinity_create_x2apicid_map(&address2os, &msg_id);
4230  if (depth == 0) {
4231  KMP_EXIT_AFF_NONE;
4232  }
4233 
4234  if (depth < 0) {
4235  if (__kmp_affinity_verbose) {
4236  if (msg_id != kmp_i18n_null) {
4237  KMP_INFORM(AffInfoStrStr, "KMP_AFFINITY",
4238  __kmp_i18n_catgets(msg_id),
4239  KMP_I18N_STR(DecodingLegacyAPIC));
4240  } else {
4241  KMP_INFORM(AffInfoStr, "KMP_AFFINITY",
4242  KMP_I18N_STR(DecodingLegacyAPIC));
4243  }
4244  }
4245 
4246  file_name = NULL;
4247  depth = __kmp_affinity_create_apicid_map(&address2os, &msg_id);
4248  if (depth == 0) {
4249  KMP_EXIT_AFF_NONE;
4250  }
4251  }
4252  }
4253 
4254 #endif /* KMP_ARCH_X86 || KMP_ARCH_X86_64 */
4255 
4256 #if KMP_OS_LINUX
4257 
4258  if (depth < 0) {
4259  if (__kmp_affinity_verbose) {
4260  if (msg_id != kmp_i18n_null) {
4261  KMP_INFORM(AffStrParseFilename, "KMP_AFFINITY",
4262  __kmp_i18n_catgets(msg_id), "/proc/cpuinfo");
4263  } else {
4264  KMP_INFORM(AffParseFilename, "KMP_AFFINITY", "/proc/cpuinfo");
4265  }
4266  }
4267 
4268  FILE *f = fopen("/proc/cpuinfo", "r");
4269  if (f == NULL) {
4270  msg_id = kmp_i18n_str_CantOpenCpuinfo;
4271  } else {
4272  file_name = "/proc/cpuinfo";
4273  depth =
4274  __kmp_affinity_create_cpuinfo_map(&address2os, &line, &msg_id, f);
4275  fclose(f);
4276  if (depth == 0) {
4277  KMP_EXIT_AFF_NONE;
4278  }
4279  }
4280  }
4281 
4282 #endif /* KMP_OS_LINUX */
4283 
4284 #if KMP_GROUP_AFFINITY
4285 
4286  if ((depth < 0) && (__kmp_num_proc_groups > 1)) {
4287  if (__kmp_affinity_verbose) {
4288  KMP_INFORM(AffWindowsProcGroupMap, "KMP_AFFINITY");
4289  }
4290 
4291  depth = __kmp_affinity_create_proc_group_map(&address2os, &msg_id);
4292  KMP_ASSERT(depth != 0);
4293  }
4294 
4295 #endif /* KMP_GROUP_AFFINITY */
4296 
4297  if (depth < 0) {
4298  if (__kmp_affinity_verbose && (msg_id != kmp_i18n_null)) {
4299  if (file_name == NULL) {
4300  KMP_INFORM(UsingFlatOS, __kmp_i18n_catgets(msg_id));
4301  } else if (line == 0) {
4302  KMP_INFORM(UsingFlatOSFile, file_name, __kmp_i18n_catgets(msg_id));
4303  } else {
4304  KMP_INFORM(UsingFlatOSFileLine, file_name, line,
4305  __kmp_i18n_catgets(msg_id));
4306  }
4307  }
4308  // FIXME - print msg if msg_id = kmp_i18n_null ???
4309 
4310  file_name = "";
4311  depth = __kmp_affinity_create_flat_map(&address2os, &msg_id);
4312  if (depth == 0) {
4313  KMP_EXIT_AFF_NONE;
4314  }
4315  KMP_ASSERT(depth > 0);
4316  KMP_ASSERT(address2os != NULL);
4317  }
4318  }
4319 
4320 #if KMP_USE_HWLOC
4321  else if (__kmp_affinity_top_method == affinity_top_method_hwloc) {
4322  KMP_ASSERT(__kmp_affinity_dispatch->get_api_type() == KMPAffinity::HWLOC);
4323  if (__kmp_affinity_verbose) {
4324  KMP_INFORM(AffUsingHwloc, "KMP_AFFINITY");
4325  }
4326  depth = __kmp_affinity_create_hwloc_map(&address2os, &msg_id);
4327  if (depth == 0) {
4328  KMP_EXIT_AFF_NONE;
4329  }
4330  }
4331 #endif // KMP_USE_HWLOC
4332 
4333 // If the user has specified that a particular topology discovery method is to be
4334 // used, then we abort if that method fails. The exception is group affinity,
4335 // which might have been implicitly set.
4336 
4337 #if KMP_ARCH_X86 || KMP_ARCH_X86_64
4338 
4339  else if (__kmp_affinity_top_method == affinity_top_method_x2apicid) {
4340  if (__kmp_affinity_verbose) {
4341  KMP_INFORM(AffInfoStr, "KMP_AFFINITY", KMP_I18N_STR(Decodingx2APIC));
4342  }
4343 
4344  depth = __kmp_affinity_create_x2apicid_map(&address2os, &msg_id);
4345  if (depth == 0) {
4346  KMP_EXIT_AFF_NONE;
4347  }
4348  if (depth < 0) {
4349  KMP_ASSERT(msg_id != kmp_i18n_null);
4350  KMP_FATAL(MsgExiting, __kmp_i18n_catgets(msg_id));
4351  }
4352  } else if (__kmp_affinity_top_method == affinity_top_method_apicid) {
4353  if (__kmp_affinity_verbose) {
4354  KMP_INFORM(AffInfoStr, "KMP_AFFINITY", KMP_I18N_STR(DecodingLegacyAPIC));
4355  }
4356 
4357  depth = __kmp_affinity_create_apicid_map(&address2os, &msg_id);
4358  if (depth == 0) {
4359  KMP_EXIT_AFF_NONE;
4360  }
4361  if (depth < 0) {
4362  KMP_ASSERT(msg_id != kmp_i18n_null);
4363  KMP_FATAL(MsgExiting, __kmp_i18n_catgets(msg_id));
4364  }
4365  }
4366 
4367 #endif /* KMP_ARCH_X86 || KMP_ARCH_X86_64 */
4368 
4369  else if (__kmp_affinity_top_method == affinity_top_method_cpuinfo) {
4370  const char *filename;
4371  if (__kmp_cpuinfo_file != NULL) {
4372  filename = __kmp_cpuinfo_file;
4373  } else {
4374  filename = "/proc/cpuinfo";
4375  }
4376 
4377  if (__kmp_affinity_verbose) {
4378  KMP_INFORM(AffParseFilename, "KMP_AFFINITY", filename);
4379  }
4380 
4381  FILE *f = fopen(filename, "r");
4382  if (f == NULL) {
4383  int code = errno;
4384  if (__kmp_cpuinfo_file != NULL) {
4385  __kmp_fatal(KMP_MSG(CantOpenFileForReading, filename), KMP_ERR(code),
4386  KMP_HNT(NameComesFrom_CPUINFO_FILE), __kmp_msg_null);
4387  } else {
4388  __kmp_fatal(KMP_MSG(CantOpenFileForReading, filename), KMP_ERR(code),
4389  __kmp_msg_null);
4390  }
4391  }
4392  int line = 0;
4393  depth = __kmp_affinity_create_cpuinfo_map(&address2os, &line, &msg_id, f);
4394  fclose(f);
4395  if (depth < 0) {
4396  KMP_ASSERT(msg_id != kmp_i18n_null);
4397  if (line > 0) {
4398  KMP_FATAL(FileLineMsgExiting, filename, line,
4399  __kmp_i18n_catgets(msg_id));
4400  } else {
4401  KMP_FATAL(FileMsgExiting, filename, __kmp_i18n_catgets(msg_id));
4402  }
4403  }
4404  if (__kmp_affinity_type == affinity_none) {
4405  KMP_ASSERT(depth == 0);
4406  KMP_EXIT_AFF_NONE;
4407  }
4408  }
4409 
4410 #if KMP_GROUP_AFFINITY
4411 
4412  else if (__kmp_affinity_top_method == affinity_top_method_group) {
4413  if (__kmp_affinity_verbose) {
4414  KMP_INFORM(AffWindowsProcGroupMap, "KMP_AFFINITY");
4415  }
4416 
4417  depth = __kmp_affinity_create_proc_group_map(&address2os, &msg_id);
4418  KMP_ASSERT(depth != 0);
4419  if (depth < 0) {
4420  KMP_ASSERT(msg_id != kmp_i18n_null);
4421  KMP_FATAL(MsgExiting, __kmp_i18n_catgets(msg_id));
4422  }
4423  }
4424 
4425 #endif /* KMP_GROUP_AFFINITY */
4426 
4427  else if (__kmp_affinity_top_method == affinity_top_method_flat) {
4428  if (__kmp_affinity_verbose) {
4429  KMP_INFORM(AffUsingFlatOS, "KMP_AFFINITY");
4430  }
4431 
4432  depth = __kmp_affinity_create_flat_map(&address2os, &msg_id);
4433  if (depth == 0) {
4434  KMP_EXIT_AFF_NONE;
4435  }
4436  // should not fail
4437  KMP_ASSERT(depth > 0);
4438  KMP_ASSERT(address2os != NULL);
4439  }
4440 
4441 #if KMP_USE_HIER_SCHED
4442  __kmp_dispatch_set_hierarchy_values();
4443 #endif
4444 
4445  if (address2os == NULL) {
4446  if (KMP_AFFINITY_CAPABLE() &&
4447  (__kmp_affinity_verbose ||
4448  (__kmp_affinity_warnings && (__kmp_affinity_type != affinity_none)))) {
4449  KMP_WARNING(ErrorInitializeAffinity);
4450  }
4451  __kmp_affinity_type = affinity_none;
4452  __kmp_create_affinity_none_places();
4453  KMP_AFFINITY_DISABLE();
4454  return;
4455  }
4456 
4457  if (__kmp_affinity_gran == affinity_gran_tile
4458 #if KMP_USE_HWLOC
4459  && __kmp_tile_depth == 0
4460 #endif
4461  ) {
4462  // tiles requested but not detected, warn user on this
4463  KMP_WARNING(AffTilesNoTiles, "KMP_AFFINITY");
4464  }
4465 
4466  __kmp_apply_thread_places(&address2os, depth);
4467 
4468  // Create the table of masks, indexed by thread Id.
4469  unsigned maxIndex;
4470  unsigned numUnique;
4471  kmp_affin_mask_t *osId2Mask =
4472  __kmp_create_masks(&maxIndex, &numUnique, address2os, __kmp_avail_proc);
4473  if (__kmp_affinity_gran_levels == 0) {
4474  KMP_DEBUG_ASSERT((int)numUnique == __kmp_avail_proc);
4475  }
4476 
4477  // Set the childNums vector in all Address objects. This must be done before
4478  // we can sort using __kmp_affinity_cmp_Address_child_num(), which takes into
4479  // account the setting of __kmp_affinity_compact.
4480  __kmp_affinity_assign_child_nums(address2os, __kmp_avail_proc);
4481 
4482  switch (__kmp_affinity_type) {
4483 
4484  case affinity_explicit:
4485  KMP_DEBUG_ASSERT(__kmp_affinity_proclist != NULL);
4486  if (__kmp_nested_proc_bind.bind_types[0] == proc_bind_intel) {
4487  __kmp_affinity_process_proclist(
4488  &__kmp_affinity_masks, &__kmp_affinity_num_masks,
4489  __kmp_affinity_proclist, osId2Mask, maxIndex);
4490  } else {
4491  __kmp_affinity_process_placelist(
4492  &__kmp_affinity_masks, &__kmp_affinity_num_masks,
4493  __kmp_affinity_proclist, osId2Mask, maxIndex);
4494  }
4495  if (__kmp_affinity_num_masks == 0) {
4496  if (__kmp_affinity_verbose ||
4497  (__kmp_affinity_warnings && (__kmp_affinity_type != affinity_none))) {
4498  KMP_WARNING(AffNoValidProcID);
4499  }
4500  __kmp_affinity_type = affinity_none;
4501  __kmp_create_affinity_none_places();
4502  return;
4503  }
4504  break;
4505 
4506  // The other affinity types rely on sorting the Addresses according to some
4507  // permutation of the machine topology tree. Set __kmp_affinity_compact and
4508  // __kmp_affinity_offset appropriately, then jump to a common code fragment
4509  // to do the sort and create the array of affinity masks.
4510 
4511  case affinity_logical:
4512  __kmp_affinity_compact = 0;
4513  if (__kmp_affinity_offset) {
4514  __kmp_affinity_offset =
4515  __kmp_nThreadsPerCore * __kmp_affinity_offset % __kmp_avail_proc;
4516  }
4517  goto sortAddresses;
4518 
4519  case affinity_physical:
4520  if (__kmp_nThreadsPerCore > 1) {
4521  __kmp_affinity_compact = 1;
4522  if (__kmp_affinity_compact >= depth) {
4523  __kmp_affinity_compact = 0;
4524  }
4525  } else {
4526  __kmp_affinity_compact = 0;
4527  }
4528  if (__kmp_affinity_offset) {
4529  __kmp_affinity_offset =
4530  __kmp_nThreadsPerCore * __kmp_affinity_offset % __kmp_avail_proc;
4531  }
4532  goto sortAddresses;
4533 
4534  case affinity_scatter:
4535  if (__kmp_affinity_compact >= depth) {
4536  __kmp_affinity_compact = 0;
4537  } else {
4538  __kmp_affinity_compact = depth - 1 - __kmp_affinity_compact;
4539  }
4540  goto sortAddresses;
4541 
4542  case affinity_compact:
4543  if (__kmp_affinity_compact >= depth) {
4544  __kmp_affinity_compact = depth - 1;
4545  }
4546  goto sortAddresses;
4547 
4548  case affinity_balanced:
4549  if (depth <= 1) {
4550  if (__kmp_affinity_verbose || __kmp_affinity_warnings) {
4551  KMP_WARNING(AffBalancedNotAvail, "KMP_AFFINITY");
4552  }
4553  __kmp_affinity_type = affinity_none;
4554  __kmp_create_affinity_none_places();
4555  return;
4556  } else if (!__kmp_affinity_uniform_topology()) {
4557  // Save the depth for further usage
4558  __kmp_aff_depth = depth;
4559 
4560  int core_level = __kmp_affinity_find_core_level(
4561  address2os, __kmp_avail_proc, depth - 1);
4562  int ncores = __kmp_affinity_compute_ncores(address2os, __kmp_avail_proc,
4563  depth - 1, core_level);
4564  int maxprocpercore = __kmp_affinity_max_proc_per_core(
4565  address2os, __kmp_avail_proc, depth - 1, core_level);
4566 
4567  int nproc = ncores * maxprocpercore;
4568  if ((nproc < 2) || (nproc < __kmp_avail_proc)) {
4569  if (__kmp_affinity_verbose || __kmp_affinity_warnings) {
4570  KMP_WARNING(AffBalancedNotAvail, "KMP_AFFINITY");
4571  }
4572  __kmp_affinity_type = affinity_none;
4573  return;
4574  }
4575 
4576  procarr = (int *)__kmp_allocate(sizeof(int) * nproc);
4577  for (int i = 0; i < nproc; i++) {
4578  procarr[i] = -1;
4579  }
4580 
4581  int lastcore = -1;
4582  int inlastcore = 0;
4583  for (int i = 0; i < __kmp_avail_proc; i++) {
4584  int proc = address2os[i].second;
4585  int core =
4586  __kmp_affinity_find_core(address2os, i, depth - 1, core_level);
4587 
4588  if (core == lastcore) {
4589  inlastcore++;
4590  } else {
4591  inlastcore = 0;
4592  }
4593  lastcore = core;
4594 
4595  procarr[core * maxprocpercore + inlastcore] = proc;
4596  }
4597  }
4598  if (__kmp_affinity_compact >= depth) {
4599  __kmp_affinity_compact = depth - 1;
4600  }
4601 
4602  sortAddresses:
4603  // Allocate the gtid->affinity mask table.
4604  if (__kmp_affinity_dups) {
4605  __kmp_affinity_num_masks = __kmp_avail_proc;
4606  } else {
4607  __kmp_affinity_num_masks = numUnique;
4608  }
4609 
4610  if ((__kmp_nested_proc_bind.bind_types[0] != proc_bind_intel) &&
4611  (__kmp_affinity_num_places > 0) &&
4612  ((unsigned)__kmp_affinity_num_places < __kmp_affinity_num_masks)) {
4613  __kmp_affinity_num_masks = __kmp_affinity_num_places;
4614  }
4615 
4616  KMP_CPU_ALLOC_ARRAY(__kmp_affinity_masks, __kmp_affinity_num_masks);
4617 
4618  // Sort the address2os table according to the current setting of
4619  // __kmp_affinity_compact, then fill out __kmp_affinity_masks.
4620  qsort(address2os, __kmp_avail_proc, sizeof(*address2os),
4621  __kmp_affinity_cmp_Address_child_num);
4622  {
4623  int i;
4624  unsigned j;
4625  for (i = 0, j = 0; i < __kmp_avail_proc; i++) {
4626  if ((!__kmp_affinity_dups) && (!address2os[i].first.leader)) {
4627  continue;
4628  }
4629  unsigned osId = address2os[i].second;
4630  kmp_affin_mask_t *src = KMP_CPU_INDEX(osId2Mask, osId);
4631  kmp_affin_mask_t *dest = KMP_CPU_INDEX(__kmp_affinity_masks, j);
4632  KMP_ASSERT(KMP_CPU_ISSET(osId, src));
4633  KMP_CPU_COPY(dest, src);
4634  if (++j >= __kmp_affinity_num_masks) {
4635  break;
4636  }
4637  }
4638  KMP_DEBUG_ASSERT(j == __kmp_affinity_num_masks);
4639  }
4640  break;
4641 
4642  default:
4643  KMP_ASSERT2(0, "Unexpected affinity setting");
4644  }
4645 
4646  KMP_CPU_FREE_ARRAY(osId2Mask, maxIndex + 1);
4647  machine_hierarchy.init(address2os, __kmp_avail_proc);
4648 }
4649 #undef KMP_EXIT_AFF_NONE
4650 
4651 void __kmp_affinity_initialize(void) {
4652  // Much of the code above was written assuming that if a machine was not
4653  // affinity capable, then __kmp_affinity_type == affinity_none. We now
4654  // explicitly represent this as __kmp_affinity_type == affinity_disabled.
4655  // There are too many checks for __kmp_affinity_type == affinity_none
4656  // in this code. Instead of trying to change them all, check if
4657  // __kmp_affinity_type == affinity_disabled, and if so, slam it with
4658  // affinity_none, call the real initialization routine, then restore
4659  // __kmp_affinity_type to affinity_disabled.
4660  int disabled = (__kmp_affinity_type == affinity_disabled);
4661  if (!KMP_AFFINITY_CAPABLE()) {
4662  KMP_ASSERT(disabled);
4663  }
4664  if (disabled) {
4665  __kmp_affinity_type = affinity_none;
4666  }
4667  __kmp_aux_affinity_initialize();
4668  if (disabled) {
4669  __kmp_affinity_type = affinity_disabled;
4670  }
4671 }
4672 
4673 void __kmp_affinity_uninitialize(void) {
4674  if (__kmp_affinity_masks != NULL) {
4675  KMP_CPU_FREE_ARRAY(__kmp_affinity_masks, __kmp_affinity_num_masks);
4676  __kmp_affinity_masks = NULL;
4677  }
4678  if (__kmp_affin_fullMask != NULL) {
4679  KMP_CPU_FREE(__kmp_affin_fullMask);
4680  __kmp_affin_fullMask = NULL;
4681  }
4682  __kmp_affinity_num_masks = 0;
4683  __kmp_affinity_type = affinity_default;
4684  __kmp_affinity_num_places = 0;
4685  if (__kmp_affinity_proclist != NULL) {
4686  __kmp_free(__kmp_affinity_proclist);
4687  __kmp_affinity_proclist = NULL;
4688  }
4689  if (address2os != NULL) {
4690  __kmp_free(address2os);
4691  address2os = NULL;
4692  }
4693  if (procarr != NULL) {
4694  __kmp_free(procarr);
4695  procarr = NULL;
4696  }
4697 #if KMP_USE_HWLOC
4698  if (__kmp_hwloc_topology != NULL) {
4699  hwloc_topology_destroy(__kmp_hwloc_topology);
4700  __kmp_hwloc_topology = NULL;
4701  }
4702 #endif
4703  KMPAffinity::destroy_api();
4704 }
4705 
4706 void __kmp_affinity_set_init_mask(int gtid, int isa_root) {
4707  if (!KMP_AFFINITY_CAPABLE()) {
4708  return;
4709  }
4710 
4711  kmp_info_t *th = (kmp_info_t *)TCR_SYNC_PTR(__kmp_threads[gtid]);
4712  if (th->th.th_affin_mask == NULL) {
4713  KMP_CPU_ALLOC(th->th.th_affin_mask);
4714  } else {
4715  KMP_CPU_ZERO(th->th.th_affin_mask);
4716  }
4717 
4718  // Copy the thread mask to the kmp_info_t structure. If
4719  // __kmp_affinity_type == affinity_none, copy the "full" mask, i.e. one that
4720  // has all of the OS proc ids set, or if __kmp_affinity_respect_mask is set,
4721  // then the full mask is the same as the mask of the initialization thread.
4722  kmp_affin_mask_t *mask;
4723  int i;
4724 
4725  if (KMP_AFFINITY_NON_PROC_BIND) {
4726  if ((__kmp_affinity_type == affinity_none) ||
4727  (__kmp_affinity_type == affinity_balanced)) {
4728 #if KMP_GROUP_AFFINITY
4729  if (__kmp_num_proc_groups > 1) {
4730  return;
4731  }
4732 #endif
4733  KMP_ASSERT(__kmp_affin_fullMask != NULL);
4734  i = 0;
4735  mask = __kmp_affin_fullMask;
4736  } else {
4737  KMP_DEBUG_ASSERT(__kmp_affinity_num_masks > 0);
4738  i = (gtid + __kmp_affinity_offset) % __kmp_affinity_num_masks;
4739  mask = KMP_CPU_INDEX(__kmp_affinity_masks, i);
4740  }
4741  } else {
4742  if ((!isa_root) ||
4743  (__kmp_nested_proc_bind.bind_types[0] == proc_bind_false)) {
4744 #if KMP_GROUP_AFFINITY
4745  if (__kmp_num_proc_groups > 1) {
4746  return;
4747  }
4748 #endif
4749  KMP_ASSERT(__kmp_affin_fullMask != NULL);
4750  i = KMP_PLACE_ALL;
4751  mask = __kmp_affin_fullMask;
4752  } else {
4753  // int i = some hash function or just a counter that doesn't
4754  // always start at 0. Use gtid for now.
4755  KMP_DEBUG_ASSERT(__kmp_affinity_num_masks > 0);
4756  i = (gtid + __kmp_affinity_offset) % __kmp_affinity_num_masks;
4757  mask = KMP_CPU_INDEX(__kmp_affinity_masks, i);
4758  }
4759  }
4760 
4761  th->th.th_current_place = i;
4762  if (isa_root) {
4763  th->th.th_new_place = i;
4764  th->th.th_first_place = 0;
4765  th->th.th_last_place = __kmp_affinity_num_masks - 1;
4766  } else if (KMP_AFFINITY_NON_PROC_BIND) {
4767  // When using a Non-OMP_PROC_BIND affinity method,
4768  // set all threads' place-partition-var to the entire place list
4769  th->th.th_first_place = 0;
4770  th->th.th_last_place = __kmp_affinity_num_masks - 1;
4771  }
4772 
4773  if (i == KMP_PLACE_ALL) {
4774  KA_TRACE(100, ("__kmp_affinity_set_init_mask: binding T#%d to all places\n",
4775  gtid));
4776  } else {
4777  KA_TRACE(100, ("__kmp_affinity_set_init_mask: binding T#%d to place %d\n",
4778  gtid, i));
4779  }
4780 
4781  KMP_CPU_COPY(th->th.th_affin_mask, mask);
4782 
4783  if (__kmp_affinity_verbose
4784  /* to avoid duplicate printing (will be correctly printed on barrier) */
4785  && (__kmp_affinity_type == affinity_none ||
4786  (i != KMP_PLACE_ALL && __kmp_affinity_type != affinity_balanced))) {
4787  char buf[KMP_AFFIN_MASK_PRINT_LEN];
4788  __kmp_affinity_print_mask(buf, KMP_AFFIN_MASK_PRINT_LEN,
4789  th->th.th_affin_mask);
4790  KMP_INFORM(BoundToOSProcSet, "KMP_AFFINITY", (kmp_int32)getpid(),
4791  __kmp_gettid(), gtid, buf);
4792  }
4793 
4794 #if KMP_OS_WINDOWS
4795  // On Windows* OS, the process affinity mask might have changed. If the user
4796  // didn't request affinity and this call fails, just continue silently.
4797  // See CQ171393.
4798  if (__kmp_affinity_type == affinity_none) {
4799  __kmp_set_system_affinity(th->th.th_affin_mask, FALSE);
4800  } else
4801 #endif
4802  __kmp_set_system_affinity(th->th.th_affin_mask, TRUE);
4803 }
4804 
4805 void __kmp_affinity_set_place(int gtid) {
4806  if (!KMP_AFFINITY_CAPABLE()) {
4807  return;
4808  }
4809 
4810  kmp_info_t *th = (kmp_info_t *)TCR_SYNC_PTR(__kmp_threads[gtid]);
4811 
4812  KA_TRACE(100, ("__kmp_affinity_set_place: binding T#%d to place %d (current "
4813  "place = %d)\n",
4814  gtid, th->th.th_new_place, th->th.th_current_place));
4815 
4816  // Check that the new place is within this thread's partition.
4817  KMP_DEBUG_ASSERT(th->th.th_affin_mask != NULL);
4818  KMP_ASSERT(th->th.th_new_place >= 0);
4819  KMP_ASSERT((unsigned)th->th.th_new_place <= __kmp_affinity_num_masks);
4820  if (th->th.th_first_place <= th->th.th_last_place) {
4821  KMP_ASSERT((th->th.th_new_place >= th->th.th_first_place) &&
4822  (th->th.th_new_place <= th->th.th_last_place));
4823  } else {
4824  KMP_ASSERT((th->th.th_new_place <= th->th.th_first_place) ||
4825  (th->th.th_new_place >= th->th.th_last_place));
4826  }
4827 
4828  // Copy the thread mask to the kmp_info_t structure,
4829  // and set this thread's affinity.
4830  kmp_affin_mask_t *mask =
4831  KMP_CPU_INDEX(__kmp_affinity_masks, th->th.th_new_place);
4832  KMP_CPU_COPY(th->th.th_affin_mask, mask);
4833  th->th.th_current_place = th->th.th_new_place;
4834 
4835  if (__kmp_affinity_verbose) {
4836  char buf[KMP_AFFIN_MASK_PRINT_LEN];
4837  __kmp_affinity_print_mask(buf, KMP_AFFIN_MASK_PRINT_LEN,
4838  th->th.th_affin_mask);
4839  KMP_INFORM(BoundToOSProcSet, "OMP_PROC_BIND", (kmp_int32)getpid(),
4840  __kmp_gettid(), gtid, buf);
4841  }
4842  __kmp_set_system_affinity(th->th.th_affin_mask, TRUE);
4843 }
4844 
4845 int __kmp_aux_set_affinity(void **mask) {
4846  int gtid;
4847  kmp_info_t *th;
4848  int retval;
4849 
4850  if (!KMP_AFFINITY_CAPABLE()) {
4851  return -1;
4852  }
4853 
4854  gtid = __kmp_entry_gtid();
4855  KA_TRACE(1000, (""); {
4856  char buf[KMP_AFFIN_MASK_PRINT_LEN];
4857  __kmp_affinity_print_mask(buf, KMP_AFFIN_MASK_PRINT_LEN,
4858  (kmp_affin_mask_t *)(*mask));
4859  __kmp_debug_printf(
4860  "kmp_set_affinity: setting affinity mask for thread %d = %s\n", gtid,
4861  buf);
4862  });
4863 
4864  if (__kmp_env_consistency_check) {
4865  if ((mask == NULL) || (*mask == NULL)) {
4866  KMP_FATAL(AffinityInvalidMask, "kmp_set_affinity");
4867  } else {
4868  unsigned proc;
4869  int num_procs = 0;
4870 
4871  KMP_CPU_SET_ITERATE(proc, ((kmp_affin_mask_t *)(*mask))) {
4872  if (!KMP_CPU_ISSET(proc, __kmp_affin_fullMask)) {
4873  KMP_FATAL(AffinityInvalidMask, "kmp_set_affinity");
4874  }
4875  if (!KMP_CPU_ISSET(proc, (kmp_affin_mask_t *)(*mask))) {
4876  continue;
4877  }
4878  num_procs++;
4879  }
4880  if (num_procs == 0) {
4881  KMP_FATAL(AffinityInvalidMask, "kmp_set_affinity");
4882  }
4883 
4884 #if KMP_GROUP_AFFINITY
4885  if (__kmp_get_proc_group((kmp_affin_mask_t *)(*mask)) < 0) {
4886  KMP_FATAL(AffinityInvalidMask, "kmp_set_affinity");
4887  }
4888 #endif /* KMP_GROUP_AFFINITY */
4889  }
4890  }
4891 
4892  th = __kmp_threads[gtid];
4893  KMP_DEBUG_ASSERT(th->th.th_affin_mask != NULL);
4894  retval = __kmp_set_system_affinity((kmp_affin_mask_t *)(*mask), FALSE);
4895  if (retval == 0) {
4896  KMP_CPU_COPY(th->th.th_affin_mask, (kmp_affin_mask_t *)(*mask));
4897  }
4898 
4899  th->th.th_current_place = KMP_PLACE_UNDEFINED;
4900  th->th.th_new_place = KMP_PLACE_UNDEFINED;
4901  th->th.th_first_place = 0;
4902  th->th.th_last_place = __kmp_affinity_num_masks - 1;
4903 
4904  // Turn off 4.0 affinity for the current tread at this parallel level.
4905  th->th.th_current_task->td_icvs.proc_bind = proc_bind_false;
4906 
4907  return retval;
4908 }
4909 
4910 int __kmp_aux_get_affinity(void **mask) {
4911  int gtid;
4912  int retval;
4913  kmp_info_t *th;
4914 
4915  if (!KMP_AFFINITY_CAPABLE()) {
4916  return -1;
4917  }
4918 
4919  gtid = __kmp_entry_gtid();
4920  th = __kmp_threads[gtid];
4921  KMP_DEBUG_ASSERT(th->th.th_affin_mask != NULL);
4922 
4923  KA_TRACE(1000, (""); {
4924  char buf[KMP_AFFIN_MASK_PRINT_LEN];
4925  __kmp_affinity_print_mask(buf, KMP_AFFIN_MASK_PRINT_LEN,
4926  th->th.th_affin_mask);
4927  __kmp_printf("kmp_get_affinity: stored affinity mask for thread %d = %s\n",
4928  gtid, buf);
4929  });
4930 
4931  if (__kmp_env_consistency_check) {
4932  if ((mask == NULL) || (*mask == NULL)) {
4933  KMP_FATAL(AffinityInvalidMask, "kmp_get_affinity");
4934  }
4935  }
4936 
4937 #if !KMP_OS_WINDOWS
4938 
4939  retval = __kmp_get_system_affinity((kmp_affin_mask_t *)(*mask), FALSE);
4940  KA_TRACE(1000, (""); {
4941  char buf[KMP_AFFIN_MASK_PRINT_LEN];
4942  __kmp_affinity_print_mask(buf, KMP_AFFIN_MASK_PRINT_LEN,
4943  (kmp_affin_mask_t *)(*mask));
4944  __kmp_printf("kmp_get_affinity: system affinity mask for thread %d = %s\n",
4945  gtid, buf);
4946  });
4947  return retval;
4948 
4949 #else
4950 
4951  KMP_CPU_COPY((kmp_affin_mask_t *)(*mask), th->th.th_affin_mask);
4952  return 0;
4953 
4954 #endif /* KMP_OS_WINDOWS */
4955 }
4956 
4957 int __kmp_aux_get_affinity_max_proc() {
4958  if (!KMP_AFFINITY_CAPABLE()) {
4959  return 0;
4960  }
4961 #if KMP_GROUP_AFFINITY
4962  if (__kmp_num_proc_groups > 1) {
4963  return (int)(__kmp_num_proc_groups * sizeof(DWORD_PTR) * CHAR_BIT);
4964  }
4965 #endif
4966  return __kmp_xproc;
4967 }
4968 
4969 int __kmp_aux_set_affinity_mask_proc(int proc, void **mask) {
4970  if (!KMP_AFFINITY_CAPABLE()) {
4971  return -1;
4972  }
4973 
4974  KA_TRACE(1000, (""); {
4975  int gtid = __kmp_entry_gtid();
4976  char buf[KMP_AFFIN_MASK_PRINT_LEN];
4977  __kmp_affinity_print_mask(buf, KMP_AFFIN_MASK_PRINT_LEN,
4978  (kmp_affin_mask_t *)(*mask));
4979  __kmp_debug_printf("kmp_set_affinity_mask_proc: setting proc %d in "
4980  "affinity mask for thread %d = %s\n",
4981  proc, gtid, buf);
4982  });
4983 
4984  if (__kmp_env_consistency_check) {
4985  if ((mask == NULL) || (*mask == NULL)) {
4986  KMP_FATAL(AffinityInvalidMask, "kmp_set_affinity_mask_proc");
4987  }
4988  }
4989 
4990  if ((proc < 0) || (proc >= __kmp_aux_get_affinity_max_proc())) {
4991  return -1;
4992  }
4993  if (!KMP_CPU_ISSET(proc, __kmp_affin_fullMask)) {
4994  return -2;
4995  }
4996 
4997  KMP_CPU_SET(proc, (kmp_affin_mask_t *)(*mask));
4998  return 0;
4999 }
5000 
5001 int __kmp_aux_unset_affinity_mask_proc(int proc, void **mask) {
5002  if (!KMP_AFFINITY_CAPABLE()) {
5003  return -1;
5004  }
5005 
5006  KA_TRACE(1000, (""); {
5007  int gtid = __kmp_entry_gtid();
5008  char buf[KMP_AFFIN_MASK_PRINT_LEN];
5009  __kmp_affinity_print_mask(buf, KMP_AFFIN_MASK_PRINT_LEN,
5010  (kmp_affin_mask_t *)(*mask));
5011  __kmp_debug_printf("kmp_unset_affinity_mask_proc: unsetting proc %d in "
5012  "affinity mask for thread %d = %s\n",
5013  proc, gtid, buf);
5014  });
5015 
5016  if (__kmp_env_consistency_check) {
5017  if ((mask == NULL) || (*mask == NULL)) {
5018  KMP_FATAL(AffinityInvalidMask, "kmp_unset_affinity_mask_proc");
5019  }
5020  }
5021 
5022  if ((proc < 0) || (proc >= __kmp_aux_get_affinity_max_proc())) {
5023  return -1;
5024  }
5025  if (!KMP_CPU_ISSET(proc, __kmp_affin_fullMask)) {
5026  return -2;
5027  }
5028 
5029  KMP_CPU_CLR(proc, (kmp_affin_mask_t *)(*mask));
5030  return 0;
5031 }
5032 
5033 int __kmp_aux_get_affinity_mask_proc(int proc, void **mask) {
5034  if (!KMP_AFFINITY_CAPABLE()) {
5035  return -1;
5036  }
5037 
5038  KA_TRACE(1000, (""); {
5039  int gtid = __kmp_entry_gtid();
5040  char buf[KMP_AFFIN_MASK_PRINT_LEN];
5041  __kmp_affinity_print_mask(buf, KMP_AFFIN_MASK_PRINT_LEN,
5042  (kmp_affin_mask_t *)(*mask));
5043  __kmp_debug_printf("kmp_get_affinity_mask_proc: getting proc %d in "
5044  "affinity mask for thread %d = %s\n",
5045  proc, gtid, buf);
5046  });
5047 
5048  if (__kmp_env_consistency_check) {
5049  if ((mask == NULL) || (*mask == NULL)) {
5050  KMP_FATAL(AffinityInvalidMask, "kmp_get_affinity_mask_proc");
5051  }
5052  }
5053 
5054  if ((proc < 0) || (proc >= __kmp_aux_get_affinity_max_proc())) {
5055  return -1;
5056  }
5057  if (!KMP_CPU_ISSET(proc, __kmp_affin_fullMask)) {
5058  return 0;
5059  }
5060 
5061  return KMP_CPU_ISSET(proc, (kmp_affin_mask_t *)(*mask));
5062 }
5063 
5064 // Dynamic affinity settings - Affinity balanced
5065 void __kmp_balanced_affinity(kmp_info_t *th, int nthreads) {
5066  KMP_DEBUG_ASSERT(th);
5067  bool fine_gran = true;
5068  int tid = th->th.th_info.ds.ds_tid;
5069 
5070  switch (__kmp_affinity_gran) {
5071  case affinity_gran_fine:
5072  case affinity_gran_thread:
5073  break;
5074  case affinity_gran_core:
5075  if (__kmp_nThreadsPerCore > 1) {
5076  fine_gran = false;
5077  }
5078  break;
5079  case affinity_gran_package:
5080  if (nCoresPerPkg > 1) {
5081  fine_gran = false;
5082  }
5083  break;
5084  default:
5085  fine_gran = false;
5086  }
5087 
5088  if (__kmp_affinity_uniform_topology()) {
5089  int coreID;
5090  int threadID;
5091  // Number of hyper threads per core in HT machine
5092  int __kmp_nth_per_core = __kmp_avail_proc / __kmp_ncores;
5093  // Number of cores
5094  int ncores = __kmp_ncores;
5095  if ((nPackages > 1) && (__kmp_nth_per_core <= 1)) {
5096  __kmp_nth_per_core = __kmp_avail_proc / nPackages;
5097  ncores = nPackages;
5098  }
5099  // How many threads will be bound to each core
5100  int chunk = nthreads / ncores;
5101  // How many cores will have an additional thread bound to it - "big cores"
5102  int big_cores = nthreads % ncores;
5103  // Number of threads on the big cores
5104  int big_nth = (chunk + 1) * big_cores;
5105  if (tid < big_nth) {
5106  coreID = tid / (chunk + 1);
5107  threadID = (tid % (chunk + 1)) % __kmp_nth_per_core;
5108  } else { // tid >= big_nth
5109  coreID = (tid - big_cores) / chunk;
5110  threadID = ((tid - big_cores) % chunk) % __kmp_nth_per_core;
5111  }
5112 
5113  KMP_DEBUG_ASSERT2(KMP_AFFINITY_CAPABLE(),
5114  "Illegal set affinity operation when not capable");
5115 
5116  kmp_affin_mask_t *mask = th->th.th_affin_mask;
5117  KMP_CPU_ZERO(mask);
5118 
5119  if (fine_gran) {
5120  int osID = address2os[coreID * __kmp_nth_per_core + threadID].second;
5121  KMP_CPU_SET(osID, mask);
5122  } else {
5123  for (int i = 0; i < __kmp_nth_per_core; i++) {
5124  int osID;
5125  osID = address2os[coreID * __kmp_nth_per_core + i].second;
5126  KMP_CPU_SET(osID, mask);
5127  }
5128  }
5129  if (__kmp_affinity_verbose) {
5130  char buf[KMP_AFFIN_MASK_PRINT_LEN];
5131  __kmp_affinity_print_mask(buf, KMP_AFFIN_MASK_PRINT_LEN, mask);
5132  KMP_INFORM(BoundToOSProcSet, "KMP_AFFINITY", (kmp_int32)getpid(),
5133  __kmp_gettid(), tid, buf);
5134  }
5135  __kmp_set_system_affinity(mask, TRUE);
5136  } else { // Non-uniform topology
5137 
5138  kmp_affin_mask_t *mask = th->th.th_affin_mask;
5139  KMP_CPU_ZERO(mask);
5140 
5141  int core_level = __kmp_affinity_find_core_level(
5142  address2os, __kmp_avail_proc, __kmp_aff_depth - 1);
5143  int ncores = __kmp_affinity_compute_ncores(address2os, __kmp_avail_proc,
5144  __kmp_aff_depth - 1, core_level);
5145  int nth_per_core = __kmp_affinity_max_proc_per_core(
5146  address2os, __kmp_avail_proc, __kmp_aff_depth - 1, core_level);
5147 
5148  // For performance gain consider the special case nthreads ==
5149  // __kmp_avail_proc
5150  if (nthreads == __kmp_avail_proc) {
5151  if (fine_gran) {
5152  int osID = address2os[tid].second;
5153  KMP_CPU_SET(osID, mask);
5154  } else {
5155  int core = __kmp_affinity_find_core(address2os, tid,
5156  __kmp_aff_depth - 1, core_level);
5157  for (int i = 0; i < __kmp_avail_proc; i++) {
5158  int osID = address2os[i].second;
5159  if (__kmp_affinity_find_core(address2os, i, __kmp_aff_depth - 1,
5160  core_level) == core) {
5161  KMP_CPU_SET(osID, mask);
5162  }
5163  }
5164  }
5165  } else if (nthreads <= ncores) {
5166 
5167  int core = 0;
5168  for (int i = 0; i < ncores; i++) {
5169  // Check if this core from procarr[] is in the mask
5170  int in_mask = 0;
5171  for (int j = 0; j < nth_per_core; j++) {
5172  if (procarr[i * nth_per_core + j] != -1) {
5173  in_mask = 1;
5174  break;
5175  }
5176  }
5177  if (in_mask) {
5178  if (tid == core) {
5179  for (int j = 0; j < nth_per_core; j++) {
5180  int osID = procarr[i * nth_per_core + j];
5181  if (osID != -1) {
5182  KMP_CPU_SET(osID, mask);
5183  // For fine granularity it is enough to set the first available
5184  // osID for this core
5185  if (fine_gran) {
5186  break;
5187  }
5188  }
5189  }
5190  break;
5191  } else {
5192  core++;
5193  }
5194  }
5195  }
5196  } else { // nthreads > ncores
5197  // Array to save the number of processors at each core
5198  int *nproc_at_core = (int *)KMP_ALLOCA(sizeof(int) * ncores);
5199  // Array to save the number of cores with "x" available processors;
5200  int *ncores_with_x_procs =
5201  (int *)KMP_ALLOCA(sizeof(int) * (nth_per_core + 1));
5202  // Array to save the number of cores with # procs from x to nth_per_core
5203  int *ncores_with_x_to_max_procs =
5204  (int *)KMP_ALLOCA(sizeof(int) * (nth_per_core + 1));
5205 
5206  for (int i = 0; i <= nth_per_core; i++) {
5207  ncores_with_x_procs[i] = 0;
5208  ncores_with_x_to_max_procs[i] = 0;
5209  }
5210 
5211  for (int i = 0; i < ncores; i++) {
5212  int cnt = 0;
5213  for (int j = 0; j < nth_per_core; j++) {
5214  if (procarr[i * nth_per_core + j] != -1) {
5215  cnt++;
5216  }
5217  }
5218  nproc_at_core[i] = cnt;
5219  ncores_with_x_procs[cnt]++;
5220  }
5221 
5222  for (int i = 0; i <= nth_per_core; i++) {
5223  for (int j = i; j <= nth_per_core; j++) {
5224  ncores_with_x_to_max_procs[i] += ncores_with_x_procs[j];
5225  }
5226  }
5227 
5228  // Max number of processors
5229  int nproc = nth_per_core * ncores;
5230  // An array to keep number of threads per each context
5231  int *newarr = (int *)__kmp_allocate(sizeof(int) * nproc);
5232  for (int i = 0; i < nproc; i++) {
5233  newarr[i] = 0;
5234  }
5235 
5236  int nth = nthreads;
5237  int flag = 0;
5238  while (nth > 0) {
5239  for (int j = 1; j <= nth_per_core; j++) {
5240  int cnt = ncores_with_x_to_max_procs[j];
5241  for (int i = 0; i < ncores; i++) {
5242  // Skip the core with 0 processors
5243  if (nproc_at_core[i] == 0) {
5244  continue;
5245  }
5246  for (int k = 0; k < nth_per_core; k++) {
5247  if (procarr[i * nth_per_core + k] != -1) {
5248  if (newarr[i * nth_per_core + k] == 0) {
5249  newarr[i * nth_per_core + k] = 1;
5250  cnt--;
5251  nth--;
5252  break;
5253  } else {
5254  if (flag != 0) {
5255  newarr[i * nth_per_core + k]++;
5256  cnt--;
5257  nth--;
5258  break;
5259  }
5260  }
5261  }
5262  }
5263  if (cnt == 0 || nth == 0) {
5264  break;
5265  }
5266  }
5267  if (nth == 0) {
5268  break;
5269  }
5270  }
5271  flag = 1;
5272  }
5273  int sum = 0;
5274  for (int i = 0; i < nproc; i++) {
5275  sum += newarr[i];
5276  if (sum > tid) {
5277  if (fine_gran) {
5278  int osID = procarr[i];
5279  KMP_CPU_SET(osID, mask);
5280  } else {
5281  int coreID = i / nth_per_core;
5282  for (int ii = 0; ii < nth_per_core; ii++) {
5283  int osID = procarr[coreID * nth_per_core + ii];
5284  if (osID != -1) {
5285  KMP_CPU_SET(osID, mask);
5286  }
5287  }
5288  }
5289  break;
5290  }
5291  }
5292  __kmp_free(newarr);
5293  }
5294 
5295  if (__kmp_affinity_verbose) {
5296  char buf[KMP_AFFIN_MASK_PRINT_LEN];
5297  __kmp_affinity_print_mask(buf, KMP_AFFIN_MASK_PRINT_LEN, mask);
5298  KMP_INFORM(BoundToOSProcSet, "KMP_AFFINITY", (kmp_int32)getpid(),
5299  __kmp_gettid(), tid, buf);
5300  }
5301  __kmp_set_system_affinity(mask, TRUE);
5302  }
5303 }
5304 
5305 #if KMP_OS_LINUX || KMP_OS_FREEBSD
5306 // We don't need this entry for Windows because
5307 // there is GetProcessAffinityMask() api
5308 //
5309 // The intended usage is indicated by these steps:
5310 // 1) The user gets the current affinity mask
5311 // 2) Then sets the affinity by calling this function
5312 // 3) Error check the return value
5313 // 4) Use non-OpenMP parallelization
5314 // 5) Reset the affinity to what was stored in step 1)
5315 #ifdef __cplusplus
5316 extern "C"
5317 #endif
5318  int
5319  kmp_set_thread_affinity_mask_initial()
5320 // the function returns 0 on success,
5321 // -1 if we cannot bind thread
5322 // >0 (errno) if an error happened during binding
5323 {
5324  int gtid = __kmp_get_gtid();
5325  if (gtid < 0) {
5326  // Do not touch non-omp threads
5327  KA_TRACE(30, ("kmp_set_thread_affinity_mask_initial: "
5328  "non-omp thread, returning\n"));
5329  return -1;
5330  }
5331  if (!KMP_AFFINITY_CAPABLE() || !__kmp_init_middle) {
5332  KA_TRACE(30, ("kmp_set_thread_affinity_mask_initial: "
5333  "affinity not initialized, returning\n"));
5334  return -1;
5335  }
5336  KA_TRACE(30, ("kmp_set_thread_affinity_mask_initial: "
5337  "set full mask for thread %d\n",
5338  gtid));
5339  KMP_DEBUG_ASSERT(__kmp_affin_fullMask != NULL);
5340  return __kmp_set_system_affinity(__kmp_affin_fullMask, FALSE);
5341 }
5342 #endif
5343 
5344 #endif // KMP_AFFINITY_SUPPORTED