LLVM OpenMP* Runtime Library
kmp_affinity.cpp
1 /*
2  * kmp_affinity.cpp -- affinity management
3  */
4 
5 //===----------------------------------------------------------------------===//
6 //
7 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
8 // See https://llvm.org/LICENSE.txt for license information.
9 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "kmp.h"
14 #include "kmp_affinity.h"
15 #include "kmp_i18n.h"
16 #include "kmp_io.h"
17 #include "kmp_str.h"
18 #include "kmp_wrapper_getpid.h"
19 #if KMP_USE_HIER_SCHED
20 #include "kmp_dispatch_hier.h"
21 #endif
22 
23 // Store the real or imagined machine hierarchy here
24 static hierarchy_info machine_hierarchy;
25 
26 void __kmp_cleanup_hierarchy() { machine_hierarchy.fini(); }
27 
28 void __kmp_get_hierarchy(kmp_uint32 nproc, kmp_bstate_t *thr_bar) {
29  kmp_uint32 depth;
30  // The test below is true if affinity is available, but set to "none". Need to
31  // init on first use of hierarchical barrier.
32  if (TCR_1(machine_hierarchy.uninitialized))
33  machine_hierarchy.init(NULL, nproc);
34 
35  // Adjust the hierarchy in case num threads exceeds original
36  if (nproc > machine_hierarchy.base_num_threads)
37  machine_hierarchy.resize(nproc);
38 
39  depth = machine_hierarchy.depth;
40  KMP_DEBUG_ASSERT(depth > 0);
41 
42  thr_bar->depth = depth;
43  __kmp_type_convert(machine_hierarchy.numPerLevel[0] - 1,
44  &(thr_bar->base_leaf_kids));
45  thr_bar->skip_per_level = machine_hierarchy.skipPerLevel;
46 }
47 
48 #if KMP_AFFINITY_SUPPORTED
49 
50 bool KMPAffinity::picked_api = false;
51 
52 void *KMPAffinity::Mask::operator new(size_t n) { return __kmp_allocate(n); }
53 void *KMPAffinity::Mask::operator new[](size_t n) { return __kmp_allocate(n); }
54 void KMPAffinity::Mask::operator delete(void *p) { __kmp_free(p); }
55 void KMPAffinity::Mask::operator delete[](void *p) { __kmp_free(p); }
56 void *KMPAffinity::operator new(size_t n) { return __kmp_allocate(n); }
57 void KMPAffinity::operator delete(void *p) { __kmp_free(p); }
58 
59 void KMPAffinity::pick_api() {
60  KMPAffinity *affinity_dispatch;
61  if (picked_api)
62  return;
63 #if KMP_USE_HWLOC
64  // Only use Hwloc if affinity isn't explicitly disabled and
65  // user requests Hwloc topology method
66  if (__kmp_affinity_top_method == affinity_top_method_hwloc &&
67  __kmp_affinity_type != affinity_disabled) {
68  affinity_dispatch = new KMPHwlocAffinity();
69  } else
70 #endif
71  {
72  affinity_dispatch = new KMPNativeAffinity();
73  }
74  __kmp_affinity_dispatch = affinity_dispatch;
75  picked_api = true;
76 }
77 
78 void KMPAffinity::destroy_api() {
79  if (__kmp_affinity_dispatch != NULL) {
80  delete __kmp_affinity_dispatch;
81  __kmp_affinity_dispatch = NULL;
82  picked_api = false;
83  }
84 }
85 
86 #define KMP_ADVANCE_SCAN(scan) \
87  while (*scan != '\0') { \
88  scan++; \
89  }
90 
91 // Print the affinity mask to the character array in a pretty format.
92 // The format is a comma separated list of non-negative integers or integer
93 // ranges: e.g., 1,2,3-5,7,9-15
94 // The format can also be the string "{<empty>}" if no bits are set in mask
95 char *__kmp_affinity_print_mask(char *buf, int buf_len,
96  kmp_affin_mask_t *mask) {
97  int start = 0, finish = 0, previous = 0;
98  bool first_range;
99  KMP_ASSERT(buf);
100  KMP_ASSERT(buf_len >= 40);
101  KMP_ASSERT(mask);
102  char *scan = buf;
103  char *end = buf + buf_len - 1;
104 
105  // Check for empty set.
106  if (mask->begin() == mask->end()) {
107  KMP_SNPRINTF(scan, end - scan + 1, "{<empty>}");
108  KMP_ADVANCE_SCAN(scan);
109  KMP_ASSERT(scan <= end);
110  return buf;
111  }
112 
113  first_range = true;
114  start = mask->begin();
115  while (1) {
116  // Find next range
117  // [start, previous] is inclusive range of contiguous bits in mask
118  for (finish = mask->next(start), previous = start;
119  finish == previous + 1 && finish != mask->end();
120  finish = mask->next(finish)) {
121  previous = finish;
122  }
123 
124  // The first range does not need a comma printed before it, but the rest
125  // of the ranges do need a comma beforehand
126  if (!first_range) {
127  KMP_SNPRINTF(scan, end - scan + 1, "%s", ",");
128  KMP_ADVANCE_SCAN(scan);
129  } else {
130  first_range = false;
131  }
132  // Range with three or more contiguous bits in the affinity mask
133  if (previous - start > 1) {
134  KMP_SNPRINTF(scan, end - scan + 1, "%u-%u", start, previous);
135  } else {
136  // Range with one or two contiguous bits in the affinity mask
137  KMP_SNPRINTF(scan, end - scan + 1, "%u", start);
138  KMP_ADVANCE_SCAN(scan);
139  if (previous - start > 0) {
140  KMP_SNPRINTF(scan, end - scan + 1, ",%u", previous);
141  }
142  }
143  KMP_ADVANCE_SCAN(scan);
144  // Start over with new start point
145  start = finish;
146  if (start == mask->end())
147  break;
148  // Check for overflow
149  if (end - scan < 2)
150  break;
151  }
152 
153  // Check for overflow
154  KMP_ASSERT(scan <= end);
155  return buf;
156 }
157 #undef KMP_ADVANCE_SCAN
158 
159 // Print the affinity mask to the string buffer object in a pretty format
160 // The format is a comma separated list of non-negative integers or integer
161 // ranges: e.g., 1,2,3-5,7,9-15
162 // The format can also be the string "{<empty>}" if no bits are set in mask
163 kmp_str_buf_t *__kmp_affinity_str_buf_mask(kmp_str_buf_t *buf,
164  kmp_affin_mask_t *mask) {
165  int start = 0, finish = 0, previous = 0;
166  bool first_range;
167  KMP_ASSERT(buf);
168  KMP_ASSERT(mask);
169 
170  __kmp_str_buf_clear(buf);
171 
172  // Check for empty set.
173  if (mask->begin() == mask->end()) {
174  __kmp_str_buf_print(buf, "%s", "{<empty>}");
175  return buf;
176  }
177 
178  first_range = true;
179  start = mask->begin();
180  while (1) {
181  // Find next range
182  // [start, previous] is inclusive range of contiguous bits in mask
183  for (finish = mask->next(start), previous = start;
184  finish == previous + 1 && finish != mask->end();
185  finish = mask->next(finish)) {
186  previous = finish;
187  }
188 
189  // The first range does not need a comma printed before it, but the rest
190  // of the ranges do need a comma beforehand
191  if (!first_range) {
192  __kmp_str_buf_print(buf, "%s", ",");
193  } else {
194  first_range = false;
195  }
196  // Range with three or more contiguous bits in the affinity mask
197  if (previous - start > 1) {
198  __kmp_str_buf_print(buf, "%u-%u", start, previous);
199  } else {
200  // Range with one or two contiguous bits in the affinity mask
201  __kmp_str_buf_print(buf, "%u", start);
202  if (previous - start > 0) {
203  __kmp_str_buf_print(buf, ",%u", previous);
204  }
205  }
206  // Start over with new start point
207  start = finish;
208  if (start == mask->end())
209  break;
210  }
211  return buf;
212 }
213 
214 void __kmp_affinity_entire_machine_mask(kmp_affin_mask_t *mask) {
215  KMP_CPU_ZERO(mask);
216 
217 #if KMP_GROUP_AFFINITY
218 
219  if (__kmp_num_proc_groups > 1) {
220  int group;
221  KMP_DEBUG_ASSERT(__kmp_GetActiveProcessorCount != NULL);
222  for (group = 0; group < __kmp_num_proc_groups; group++) {
223  int i;
224  int num = __kmp_GetActiveProcessorCount(group);
225  for (i = 0; i < num; i++) {
226  KMP_CPU_SET(i + group * (CHAR_BIT * sizeof(DWORD_PTR)), mask);
227  }
228  }
229  } else
230 
231 #endif /* KMP_GROUP_AFFINITY */
232 
233  {
234  int proc;
235  for (proc = 0; proc < __kmp_xproc; proc++) {
236  KMP_CPU_SET(proc, mask);
237  }
238  }
239 }
240 
241 // When sorting by labels, __kmp_affinity_assign_child_nums() must first be
242 // called to renumber the labels from [0..n] and place them into the child_num
243 // vector of the address object. This is done in case the labels used for
244 // the children at one node of the hierarchy differ from those used for
245 // another node at the same level. Example: suppose the machine has 2 nodes
246 // with 2 packages each. The first node contains packages 601 and 602, and
247 // second node contains packages 603 and 604. If we try to sort the table
248 // for "scatter" affinity, the table will still be sorted 601, 602, 603, 604
249 // because we are paying attention to the labels themselves, not the ordinal
250 // child numbers. By using the child numbers in the sort, the result is
251 // {0,0}=601, {0,1}=603, {1,0}=602, {1,1}=604.
252 static void __kmp_affinity_assign_child_nums(AddrUnsPair *address2os,
253  int numAddrs) {
254  KMP_DEBUG_ASSERT(numAddrs > 0);
255  int depth = address2os->first.depth;
256  unsigned *counts = (unsigned *)__kmp_allocate(depth * sizeof(unsigned));
257  unsigned *lastLabel = (unsigned *)__kmp_allocate(depth * sizeof(unsigned));
258  int labCt;
259  for (labCt = 0; labCt < depth; labCt++) {
260  address2os[0].first.childNums[labCt] = counts[labCt] = 0;
261  lastLabel[labCt] = address2os[0].first.labels[labCt];
262  }
263  int i;
264  for (i = 1; i < numAddrs; i++) {
265  for (labCt = 0; labCt < depth; labCt++) {
266  if (address2os[i].first.labels[labCt] != lastLabel[labCt]) {
267  int labCt2;
268  for (labCt2 = labCt + 1; labCt2 < depth; labCt2++) {
269  counts[labCt2] = 0;
270  lastLabel[labCt2] = address2os[i].first.labels[labCt2];
271  }
272  counts[labCt]++;
273  lastLabel[labCt] = address2os[i].first.labels[labCt];
274  break;
275  }
276  }
277  for (labCt = 0; labCt < depth; labCt++) {
278  address2os[i].first.childNums[labCt] = counts[labCt];
279  }
280  for (; labCt < (int)Address::maxDepth; labCt++) {
281  address2os[i].first.childNums[labCt] = 0;
282  }
283  }
284  __kmp_free(lastLabel);
285  __kmp_free(counts);
286 }
287 
288 // All of the __kmp_affinity_create_*_map() routines should set
289 // __kmp_affinity_masks to a vector of affinity mask objects of length
290 // __kmp_affinity_num_masks, if __kmp_affinity_type != affinity_none, and return
291 // the number of levels in the machine topology tree (zero if
292 // __kmp_affinity_type == affinity_none).
293 //
294 // All of the __kmp_affinity_create_*_map() routines should set
295 // *__kmp_affin_fullMask to the affinity mask for the initialization thread.
296 // They need to save and restore the mask, and it could be needed later, so
297 // saving it is just an optimization to avoid calling kmp_get_system_affinity()
298 // again.
299 kmp_affin_mask_t *__kmp_affin_fullMask = NULL;
300 
301 static int nCoresPerPkg, nPackages;
302 static int __kmp_nThreadsPerCore;
303 #ifndef KMP_DFLT_NTH_CORES
304 static int __kmp_ncores;
305 #endif
306 static int *__kmp_pu_os_idx = NULL;
307 
308 // __kmp_affinity_uniform_topology() doesn't work when called from
309 // places which support arbitrarily many levels in the machine topology
310 // map, i.e. the non-default cases in __kmp_affinity_create_cpuinfo_map()
311 // __kmp_affinity_create_x2apicid_map().
312 inline static bool __kmp_affinity_uniform_topology() {
313  return __kmp_avail_proc == (__kmp_nThreadsPerCore * nCoresPerPkg * nPackages);
314 }
315 
316 // Print out the detailed machine topology map, i.e. the physical locations
317 // of each OS proc.
318 static void __kmp_affinity_print_topology(AddrUnsPair *address2os, int len,
319  int depth, int pkgLevel,
320  int coreLevel, int threadLevel) {
321  int proc;
322 
323  KMP_INFORM(OSProcToPhysicalThreadMap, "KMP_AFFINITY");
324  for (proc = 0; proc < len; proc++) {
325  int level;
326  kmp_str_buf_t buf;
327  __kmp_str_buf_init(&buf);
328  for (level = 0; level < depth; level++) {
329  if (level == threadLevel) {
330  __kmp_str_buf_print(&buf, "%s ", KMP_I18N_STR(Thread));
331  } else if (level == coreLevel) {
332  __kmp_str_buf_print(&buf, "%s ", KMP_I18N_STR(Core));
333  } else if (level == pkgLevel) {
334  __kmp_str_buf_print(&buf, "%s ", KMP_I18N_STR(Package));
335  } else if (level > pkgLevel) {
336  __kmp_str_buf_print(&buf, "%s_%d ", KMP_I18N_STR(Node),
337  level - pkgLevel - 1);
338  } else {
339  __kmp_str_buf_print(&buf, "L%d ", level);
340  }
341  __kmp_str_buf_print(&buf, "%d ", address2os[proc].first.labels[level]);
342  }
343  KMP_INFORM(OSProcMapToPack, "KMP_AFFINITY", address2os[proc].second,
344  buf.str);
345  __kmp_str_buf_free(&buf);
346  }
347 }
348 
349 #if KMP_USE_HWLOC
350 
351 static void __kmp_affinity_print_hwloc_tp(AddrUnsPair *addrP, int len,
352  int depth, int *levels) {
353  int proc;
354  kmp_str_buf_t buf;
355  __kmp_str_buf_init(&buf);
356  KMP_INFORM(OSProcToPhysicalThreadMap, "KMP_AFFINITY");
357  for (proc = 0; proc < len; proc++) {
358  __kmp_str_buf_print(&buf, "%s %d ", KMP_I18N_STR(Package),
359  addrP[proc].first.labels[0]);
360  if (depth > 1) {
361  int level = 1; // iterate over levels
362  int label = 1; // iterate over labels
363  if (__kmp_numa_detected)
364  // node level follows package
365  if (levels[level++] > 0)
366  __kmp_str_buf_print(&buf, "%s %d ", KMP_I18N_STR(Node),
367  addrP[proc].first.labels[label++]);
368  if (__kmp_tile_depth > 0)
369  // tile level follows node if any, or package
370  if (levels[level++] > 0)
371  __kmp_str_buf_print(&buf, "%s %d ", KMP_I18N_STR(Tile),
372  addrP[proc].first.labels[label++]);
373  if (levels[level++] > 0)
374  // core level follows
375  __kmp_str_buf_print(&buf, "%s %d ", KMP_I18N_STR(Core),
376  addrP[proc].first.labels[label++]);
377  if (levels[level++] > 0)
378  // thread level is the latest
379  __kmp_str_buf_print(&buf, "%s %d ", KMP_I18N_STR(Thread),
380  addrP[proc].first.labels[label++]);
381  KMP_DEBUG_ASSERT(label == depth);
382  }
383  KMP_INFORM(OSProcMapToPack, "KMP_AFFINITY", addrP[proc].second, buf.str);
384  __kmp_str_buf_clear(&buf);
385  }
386  __kmp_str_buf_free(&buf);
387 }
388 
389 static int nNodePerPkg, nTilePerPkg, nTilePerNode, nCorePerNode, nCorePerTile;
390 
391 // This function removes the topology levels that are radix 1 and don't offer
392 // further information about the topology. The most common example is when you
393 // have one thread context per core, we don't want the extra thread context
394 // level if it offers no unique labels. So they are removed.
395 // return value: the new depth of address2os
396 static int __kmp_affinity_remove_radix_one_levels(AddrUnsPair *addrP, int nTh,
397  int depth, int *levels) {
398  int level;
399  int i;
400  int radix1_detected;
401  int new_depth = depth;
402  for (level = depth - 1; level > 0; --level) {
403  // Detect if this level is radix 1
404  radix1_detected = 1;
405  for (i = 1; i < nTh; ++i) {
406  if (addrP[0].first.labels[level] != addrP[i].first.labels[level]) {
407  // There are differing label values for this level so it stays
408  radix1_detected = 0;
409  break;
410  }
411  }
412  if (!radix1_detected)
413  continue;
414  // Radix 1 was detected
415  --new_depth;
416  levels[level] = -1; // mark level as not present in address2os array
417  if (level == new_depth) {
418  // "turn off" deepest level, just decrement the depth that removes
419  // the level from address2os array
420  for (i = 0; i < nTh; ++i) {
421  addrP[i].first.depth--;
422  }
423  } else {
424  // For other levels, we move labels over and also reduce the depth
425  int j;
426  for (j = level; j < new_depth; ++j) {
427  for (i = 0; i < nTh; ++i) {
428  addrP[i].first.labels[j] = addrP[i].first.labels[j + 1];
429  addrP[i].first.depth--;
430  }
431  levels[j + 1] -= 1;
432  }
433  }
434  }
435  return new_depth;
436 }
437 
438 // Returns the number of objects of type 'type' below 'obj' within the topology
439 // tree structure. e.g., if obj is a HWLOC_OBJ_PACKAGE object, and type is
440 // HWLOC_OBJ_PU, then this will return the number of PU's under the SOCKET
441 // object.
442 static int __kmp_hwloc_get_nobjs_under_obj(hwloc_obj_t obj,
443  hwloc_obj_type_t type) {
444  int retval = 0;
445  hwloc_obj_t first;
446  for (first = hwloc_get_obj_below_by_type(__kmp_hwloc_topology, obj->type,
447  obj->logical_index, type, 0);
448  first != NULL &&
449  hwloc_get_ancestor_obj_by_type(__kmp_hwloc_topology, obj->type, first) ==
450  obj;
451  first = hwloc_get_next_obj_by_type(__kmp_hwloc_topology, first->type,
452  first)) {
453  ++retval;
454  }
455  return retval;
456 }
457 
458 static int __kmp_hwloc_count_children_by_depth(hwloc_topology_t t,
459  hwloc_obj_t o,
460  kmp_hwloc_depth_t depth,
461  hwloc_obj_t *f) {
462  if (o->depth == depth) {
463  if (*f == NULL)
464  *f = o; // output first descendant found
465  return 1;
466  }
467  int sum = 0;
468  for (unsigned i = 0; i < o->arity; i++)
469  sum += __kmp_hwloc_count_children_by_depth(t, o->children[i], depth, f);
470  return sum; // will be 0 if no one found (as PU arity is 0)
471 }
472 
473 static int __kmp_hwloc_count_children_by_type(hwloc_topology_t t, hwloc_obj_t o,
474  hwloc_obj_type_t type,
475  hwloc_obj_t *f) {
476  if (!hwloc_compare_types(o->type, type)) {
477  if (*f == NULL)
478  *f = o; // output first descendant found
479  return 1;
480  }
481  int sum = 0;
482  for (unsigned i = 0; i < o->arity; i++)
483  sum += __kmp_hwloc_count_children_by_type(t, o->children[i], type, f);
484  return sum; // will be 0 if no one found (as PU arity is 0)
485 }
486 
487 static int __kmp_hwloc_process_obj_core_pu(AddrUnsPair *addrPair,
488  int &nActiveThreads,
489  int &num_active_cores,
490  hwloc_obj_t obj, int depth,
491  int *labels) {
492  hwloc_obj_t core = NULL;
493  hwloc_topology_t &tp = __kmp_hwloc_topology;
494  int NC = __kmp_hwloc_count_children_by_type(tp, obj, HWLOC_OBJ_CORE, &core);
495  for (int core_id = 0; core_id < NC; ++core_id, core = core->next_cousin) {
496  hwloc_obj_t pu = NULL;
497  KMP_DEBUG_ASSERT(core != NULL);
498  int num_active_threads = 0;
499  int NT = __kmp_hwloc_count_children_by_type(tp, core, HWLOC_OBJ_PU, &pu);
500  // int NT = core->arity; pu = core->first_child; // faster?
501  for (int pu_id = 0; pu_id < NT; ++pu_id, pu = pu->next_cousin) {
502  KMP_DEBUG_ASSERT(pu != NULL);
503  if (!KMP_CPU_ISSET(pu->os_index, __kmp_affin_fullMask))
504  continue; // skip inactive (inaccessible) unit
505  Address addr(depth + 2);
506  KA_TRACE(20, ("Hwloc inserting %d (%d) %d (%d) %d (%d) into address2os\n",
507  obj->os_index, obj->logical_index, core->os_index,
508  core->logical_index, pu->os_index, pu->logical_index));
509  for (int i = 0; i < depth; ++i)
510  addr.labels[i] = labels[i]; // package, etc.
511  addr.labels[depth] = core_id; // core
512  addr.labels[depth + 1] = pu_id; // pu
513  addrPair[nActiveThreads] = AddrUnsPair(addr, pu->os_index);
514  __kmp_pu_os_idx[nActiveThreads] = pu->os_index;
515  nActiveThreads++;
516  ++num_active_threads; // count active threads per core
517  }
518  if (num_active_threads) { // were there any active threads on the core?
519  ++__kmp_ncores; // count total active cores
520  ++num_active_cores; // count active cores per socket
521  if (num_active_threads > __kmp_nThreadsPerCore)
522  __kmp_nThreadsPerCore = num_active_threads; // calc maximum
523  }
524  }
525  return 0;
526 }
527 
528 // Check if NUMA node detected below the package,
529 // and if tile object is detected and return its depth
530 static int __kmp_hwloc_check_numa() {
531  hwloc_topology_t &tp = __kmp_hwloc_topology;
532  hwloc_obj_t hT, hC, hL, hN, hS; // hwloc objects (pointers to)
533  int depth, l2cache_depth, package_depth;
534 
535  // Get some PU
536  hT = hwloc_get_obj_by_type(tp, HWLOC_OBJ_PU, 0);
537  if (hT == NULL) // something has gone wrong
538  return 1;
539 
540  // check NUMA node below PACKAGE
541  hN = hwloc_get_ancestor_obj_by_type(tp, HWLOC_OBJ_NUMANODE, hT);
542  hS = hwloc_get_ancestor_obj_by_type(tp, HWLOC_OBJ_PACKAGE, hT);
543  KMP_DEBUG_ASSERT(hS != NULL);
544  if (hN != NULL && hN->depth > hS->depth) {
545  __kmp_numa_detected = TRUE; // socket includes node(s)
546  if (__kmp_affinity_gran == affinity_gran_node) {
547  __kmp_affinity_gran = affinity_gran_numa;
548  }
549  }
550 
551  package_depth = hwloc_get_type_depth(tp, HWLOC_OBJ_PACKAGE);
552  l2cache_depth = hwloc_get_cache_type_depth(tp, 2, HWLOC_OBJ_CACHE_UNIFIED);
553  // check tile, get object by depth because of multiple caches possible
554  depth = (l2cache_depth < package_depth) ? package_depth : l2cache_depth;
555  hL = hwloc_get_ancestor_obj_by_depth(tp, depth, hT);
556  hC = NULL; // not used, but reset it here just in case
557  if (hL != NULL &&
558  __kmp_hwloc_count_children_by_type(tp, hL, HWLOC_OBJ_CORE, &hC) > 1)
559  __kmp_tile_depth = depth; // tile consists of multiple cores
560  return 0;
561 }
562 
563 static int __kmp_affinity_create_hwloc_map(AddrUnsPair **address2os,
564  kmp_i18n_id_t *const msg_id) {
565  hwloc_topology_t &tp = __kmp_hwloc_topology; // shortcut of a long name
566  *address2os = NULL;
567  *msg_id = kmp_i18n_null;
568 
569  // Save the affinity mask for the current thread.
570  kmp_affin_mask_t *oldMask;
571  KMP_CPU_ALLOC(oldMask);
572  __kmp_get_system_affinity(oldMask, TRUE);
573  __kmp_hwloc_check_numa();
574 
575  if (!KMP_AFFINITY_CAPABLE()) {
576  // Hack to try and infer the machine topology using only the data
577  // available from cpuid on the current thread, and __kmp_xproc.
578  KMP_ASSERT(__kmp_affinity_type == affinity_none);
579  // hwloc only guarantees existance of PU object, so check PACKAGE and CORE
580  hwloc_obj_t o = hwloc_get_obj_by_type(tp, HWLOC_OBJ_PACKAGE, 0);
581  if (o != NULL)
582  nCoresPerPkg = __kmp_hwloc_get_nobjs_under_obj(o, HWLOC_OBJ_CORE);
583  else
584  nCoresPerPkg = 1; // no PACKAGE found
585  o = hwloc_get_obj_by_type(tp, HWLOC_OBJ_CORE, 0);
586  if (o != NULL)
587  __kmp_nThreadsPerCore = __kmp_hwloc_get_nobjs_under_obj(o, HWLOC_OBJ_PU);
588  else
589  __kmp_nThreadsPerCore = 1; // no CORE found
590  __kmp_ncores = __kmp_xproc / __kmp_nThreadsPerCore;
591  if (nCoresPerPkg == 0)
592  nCoresPerPkg = 1; // to prevent possible division by 0
593  nPackages = (__kmp_xproc + nCoresPerPkg - 1) / nCoresPerPkg;
594  if (__kmp_affinity_verbose) {
595  KMP_INFORM(AffNotCapableUseLocCpuidL11, "KMP_AFFINITY");
596  KMP_INFORM(AvailableOSProc, "KMP_AFFINITY", __kmp_avail_proc);
597  if (__kmp_affinity_uniform_topology()) {
598  KMP_INFORM(Uniform, "KMP_AFFINITY");
599  } else {
600  KMP_INFORM(NonUniform, "KMP_AFFINITY");
601  }
602  KMP_INFORM(Topology, "KMP_AFFINITY", nPackages, nCoresPerPkg,
603  __kmp_nThreadsPerCore, __kmp_ncores);
604  }
605  KMP_CPU_FREE(oldMask);
606  return 0;
607  }
608 
609  int depth = 3;
610  int levels[5] = {0, 1, 2, 3, 4}; // package, [node,] [tile,] core, thread
611  int labels[3] = {0}; // package [,node] [,tile] - head of labels array
612  if (__kmp_numa_detected)
613  ++depth;
614  if (__kmp_tile_depth)
615  ++depth;
616 
617  // Allocate the data structure to be returned.
618  AddrUnsPair *retval =
619  (AddrUnsPair *)__kmp_allocate(sizeof(AddrUnsPair) * __kmp_avail_proc);
620  KMP_DEBUG_ASSERT(__kmp_pu_os_idx == NULL);
621  __kmp_pu_os_idx = (int *)__kmp_allocate(sizeof(int) * __kmp_avail_proc);
622 
623  // When affinity is off, this routine will still be called to set
624  // __kmp_ncores, as well as __kmp_nThreadsPerCore,
625  // nCoresPerPkg, & nPackages. Make sure all these vars are set
626  // correctly, and return if affinity is not enabled.
627 
628  hwloc_obj_t socket, node, tile;
629  int nActiveThreads = 0;
630  int socket_id = 0;
631  // re-calculate globals to count only accessible resources
632  __kmp_ncores = nPackages = nCoresPerPkg = __kmp_nThreadsPerCore = 0;
633  nNodePerPkg = nTilePerPkg = nTilePerNode = nCorePerNode = nCorePerTile = 0;
634  for (socket = hwloc_get_obj_by_type(tp, HWLOC_OBJ_PACKAGE, 0); socket != NULL;
635  socket = hwloc_get_next_obj_by_type(tp, HWLOC_OBJ_PACKAGE, socket),
636  socket_id++) {
637  labels[0] = socket_id;
638  if (__kmp_numa_detected) {
639  int NN;
640  int n_active_nodes = 0;
641  node = NULL;
642  NN = __kmp_hwloc_count_children_by_type(tp, socket, HWLOC_OBJ_NUMANODE,
643  &node);
644  for (int node_id = 0; node_id < NN; ++node_id, node = node->next_cousin) {
645  labels[1] = node_id;
646  if (__kmp_tile_depth) {
647  // NUMA + tiles
648  int NT;
649  int n_active_tiles = 0;
650  tile = NULL;
651  NT = __kmp_hwloc_count_children_by_depth(tp, node, __kmp_tile_depth,
652  &tile);
653  for (int tl_id = 0; tl_id < NT; ++tl_id, tile = tile->next_cousin) {
654  labels[2] = tl_id;
655  int n_active_cores = 0;
656  __kmp_hwloc_process_obj_core_pu(retval, nActiveThreads,
657  n_active_cores, tile, 3, labels);
658  if (n_active_cores) { // were there any active cores on the socket?
659  ++n_active_tiles; // count active tiles per node
660  if (n_active_cores > nCorePerTile)
661  nCorePerTile = n_active_cores; // calc maximum
662  }
663  }
664  if (n_active_tiles) { // were there any active tiles on the socket?
665  ++n_active_nodes; // count active nodes per package
666  if (n_active_tiles > nTilePerNode)
667  nTilePerNode = n_active_tiles; // calc maximum
668  }
669  } else {
670  // NUMA, no tiles
671  int n_active_cores = 0;
672  __kmp_hwloc_process_obj_core_pu(retval, nActiveThreads,
673  n_active_cores, node, 2, labels);
674  if (n_active_cores) { // were there any active cores on the socket?
675  ++n_active_nodes; // count active nodes per package
676  if (n_active_cores > nCorePerNode)
677  nCorePerNode = n_active_cores; // calc maximum
678  }
679  }
680  }
681  if (n_active_nodes) { // were there any active nodes on the socket?
682  ++nPackages; // count total active packages
683  if (n_active_nodes > nNodePerPkg)
684  nNodePerPkg = n_active_nodes; // calc maximum
685  }
686  } else {
687  if (__kmp_tile_depth) {
688  // no NUMA, tiles
689  int NT;
690  int n_active_tiles = 0;
691  tile = NULL;
692  NT = __kmp_hwloc_count_children_by_depth(tp, socket, __kmp_tile_depth,
693  &tile);
694  for (int tl_id = 0; tl_id < NT; ++tl_id, tile = tile->next_cousin) {
695  labels[1] = tl_id;
696  int n_active_cores = 0;
697  __kmp_hwloc_process_obj_core_pu(retval, nActiveThreads,
698  n_active_cores, tile, 2, labels);
699  if (n_active_cores) { // were there any active cores on the socket?
700  ++n_active_tiles; // count active tiles per package
701  if (n_active_cores > nCorePerTile)
702  nCorePerTile = n_active_cores; // calc maximum
703  }
704  }
705  if (n_active_tiles) { // were there any active tiles on the socket?
706  ++nPackages; // count total active packages
707  if (n_active_tiles > nTilePerPkg)
708  nTilePerPkg = n_active_tiles; // calc maximum
709  }
710  } else {
711  // no NUMA, no tiles
712  int n_active_cores = 0;
713  __kmp_hwloc_process_obj_core_pu(retval, nActiveThreads, n_active_cores,
714  socket, 1, labels);
715  if (n_active_cores) { // were there any active cores on the socket?
716  ++nPackages; // count total active packages
717  if (n_active_cores > nCoresPerPkg)
718  nCoresPerPkg = n_active_cores; // calc maximum
719  }
720  }
721  }
722  }
723 
724  // If there's only one thread context to bind to, return now.
725  KMP_DEBUG_ASSERT(nActiveThreads == __kmp_avail_proc);
726  KMP_ASSERT(nActiveThreads > 0);
727  if (nActiveThreads == 1) {
728  __kmp_ncores = nPackages = 1;
729  __kmp_nThreadsPerCore = nCoresPerPkg = 1;
730  if (__kmp_affinity_verbose) {
731  KMP_INFORM(AffUsingHwloc, "KMP_AFFINITY");
732  KMP_INFORM(AvailableOSProc, "KMP_AFFINITY", __kmp_avail_proc);
733  KMP_INFORM(Uniform, "KMP_AFFINITY");
734  KMP_INFORM(Topology, "KMP_AFFINITY", nPackages, nCoresPerPkg,
735  __kmp_nThreadsPerCore, __kmp_ncores);
736  }
737 
738  if (__kmp_affinity_type == affinity_none) {
739  __kmp_free(retval);
740  KMP_CPU_FREE(oldMask);
741  return 0;
742  }
743 
744  // Form an Address object which only includes the package level.
745  Address addr(1);
746  addr.labels[0] = retval[0].first.labels[0];
747  retval[0].first = addr;
748 
749  if (__kmp_affinity_gran_levels < 0) {
750  __kmp_affinity_gran_levels = 0;
751  }
752 
753  if (__kmp_affinity_verbose) {
754  __kmp_affinity_print_topology(retval, 1, 1, 0, -1, -1);
755  }
756 
757  *address2os = retval;
758  KMP_CPU_FREE(oldMask);
759  return 1;
760  }
761 
762  // Sort the table by physical Id.
763  qsort(retval, nActiveThreads, sizeof(*retval),
764  __kmp_affinity_cmp_Address_labels);
765 
766  // Check to see if the machine topology is uniform
767  int nPUs = nPackages * __kmp_nThreadsPerCore;
768  if (__kmp_numa_detected) {
769  if (__kmp_tile_depth) { // NUMA + tiles
770  nPUs *= (nNodePerPkg * nTilePerNode * nCorePerTile);
771  } else { // NUMA, no tiles
772  nPUs *= (nNodePerPkg * nCorePerNode);
773  }
774  } else {
775  if (__kmp_tile_depth) { // no NUMA, tiles
776  nPUs *= (nTilePerPkg * nCorePerTile);
777  } else { // no NUMA, no tiles
778  nPUs *= nCoresPerPkg;
779  }
780  }
781  unsigned uniform = (nPUs == nActiveThreads);
782 
783  // Print the machine topology summary.
784  if (__kmp_affinity_verbose) {
785  KMP_INFORM(AvailableOSProc, "KMP_AFFINITY", __kmp_avail_proc);
786  if (uniform) {
787  KMP_INFORM(Uniform, "KMP_AFFINITY");
788  } else {
789  KMP_INFORM(NonUniform, "KMP_AFFINITY");
790  }
791  if (__kmp_numa_detected) {
792  if (__kmp_tile_depth) { // NUMA + tiles
793  KMP_INFORM(TopologyExtraNoTi, "KMP_AFFINITY", nPackages, nNodePerPkg,
794  nTilePerNode, nCorePerTile, __kmp_nThreadsPerCore,
795  __kmp_ncores);
796  } else { // NUMA, no tiles
797  KMP_INFORM(TopologyExtraNode, "KMP_AFFINITY", nPackages, nNodePerPkg,
798  nCorePerNode, __kmp_nThreadsPerCore, __kmp_ncores);
799  nPUs *= (nNodePerPkg * nCorePerNode);
800  }
801  } else {
802  if (__kmp_tile_depth) { // no NUMA, tiles
803  KMP_INFORM(TopologyExtraTile, "KMP_AFFINITY", nPackages, nTilePerPkg,
804  nCorePerTile, __kmp_nThreadsPerCore, __kmp_ncores);
805  } else { // no NUMA, no tiles
806  kmp_str_buf_t buf;
807  __kmp_str_buf_init(&buf);
808  __kmp_str_buf_print(&buf, "%d", nPackages);
809  KMP_INFORM(TopologyExtra, "KMP_AFFINITY", buf.str, nCoresPerPkg,
810  __kmp_nThreadsPerCore, __kmp_ncores);
811  __kmp_str_buf_free(&buf);
812  }
813  }
814  }
815 
816  if (__kmp_affinity_type == affinity_none) {
817  __kmp_free(retval);
818  KMP_CPU_FREE(oldMask);
819  return 0;
820  }
821 
822  int depth_full = depth; // number of levels before compressing
823  // Find any levels with radix 1, and remove them from the map
824  // (except for the package level).
825  depth = __kmp_affinity_remove_radix_one_levels(retval, nActiveThreads, depth,
826  levels);
827  KMP_DEBUG_ASSERT(__kmp_affinity_gran != affinity_gran_default);
828  if (__kmp_affinity_gran_levels < 0) {
829  // Set the granularity level based on what levels are modeled
830  // in the machine topology map.
831  __kmp_affinity_gran_levels = 0; // lowest level (e.g. fine)
832  if (__kmp_affinity_gran > affinity_gran_thread) {
833  for (int i = 1; i <= depth_full; ++i) {
834  if (__kmp_affinity_gran <= i) // only count deeper levels
835  break;
836  if (levels[depth_full - i] > 0)
837  __kmp_affinity_gran_levels++;
838  }
839  }
840  if (__kmp_affinity_gran > affinity_gran_package)
841  __kmp_affinity_gran_levels++; // e.g. granularity = group
842  }
843 
844  if (__kmp_affinity_verbose)
845  __kmp_affinity_print_hwloc_tp(retval, nActiveThreads, depth, levels);
846 
847  KMP_CPU_FREE(oldMask);
848  *address2os = retval;
849  return depth;
850 }
851 #endif // KMP_USE_HWLOC
852 
853 // If we don't know how to retrieve the machine's processor topology, or
854 // encounter an error in doing so, this routine is called to form a "flat"
855 // mapping of os thread id's <-> processor id's.
856 static int __kmp_affinity_create_flat_map(AddrUnsPair **address2os,
857  kmp_i18n_id_t *const msg_id) {
858  *address2os = NULL;
859  *msg_id = kmp_i18n_null;
860 
861  // Even if __kmp_affinity_type == affinity_none, this routine might still
862  // called to set __kmp_ncores, as well as
863  // __kmp_nThreadsPerCore, nCoresPerPkg, & nPackages.
864  if (!KMP_AFFINITY_CAPABLE()) {
865  KMP_ASSERT(__kmp_affinity_type == affinity_none);
866  __kmp_ncores = nPackages = __kmp_xproc;
867  __kmp_nThreadsPerCore = nCoresPerPkg = 1;
868  if (__kmp_affinity_verbose) {
869  KMP_INFORM(AffFlatTopology, "KMP_AFFINITY");
870  KMP_INFORM(AvailableOSProc, "KMP_AFFINITY", __kmp_avail_proc);
871  KMP_INFORM(Uniform, "KMP_AFFINITY");
872  KMP_INFORM(Topology, "KMP_AFFINITY", nPackages, nCoresPerPkg,
873  __kmp_nThreadsPerCore, __kmp_ncores);
874  }
875  return 0;
876  }
877 
878  // When affinity is off, this routine will still be called to set
879  // __kmp_ncores, as well as __kmp_nThreadsPerCore, nCoresPerPkg, & nPackages.
880  // Make sure all these vars are set correctly, and return now if affinity is
881  // not enabled.
882  __kmp_ncores = nPackages = __kmp_avail_proc;
883  __kmp_nThreadsPerCore = nCoresPerPkg = 1;
884  if (__kmp_affinity_verbose) {
885  KMP_INFORM(AffCapableUseFlat, "KMP_AFFINITY");
886  KMP_INFORM(AvailableOSProc, "KMP_AFFINITY", __kmp_avail_proc);
887  KMP_INFORM(Uniform, "KMP_AFFINITY");
888  KMP_INFORM(Topology, "KMP_AFFINITY", nPackages, nCoresPerPkg,
889  __kmp_nThreadsPerCore, __kmp_ncores);
890  }
891  KMP_DEBUG_ASSERT(__kmp_pu_os_idx == NULL);
892  __kmp_pu_os_idx = (int *)__kmp_allocate(sizeof(int) * __kmp_avail_proc);
893  if (__kmp_affinity_type == affinity_none) {
894  int avail_ct = 0;
895  int i;
896  KMP_CPU_SET_ITERATE(i, __kmp_affin_fullMask) {
897  if (!KMP_CPU_ISSET(i, __kmp_affin_fullMask))
898  continue;
899  __kmp_pu_os_idx[avail_ct++] = i; // suppose indices are flat
900  }
901  return 0;
902  }
903 
904  // Construct the data structure to be returned.
905  *address2os =
906  (AddrUnsPair *)__kmp_allocate(sizeof(**address2os) * __kmp_avail_proc);
907  int avail_ct = 0;
908  int i;
909  KMP_CPU_SET_ITERATE(i, __kmp_affin_fullMask) {
910  // Skip this proc if it is not included in the machine model.
911  if (!KMP_CPU_ISSET(i, __kmp_affin_fullMask)) {
912  continue;
913  }
914  __kmp_pu_os_idx[avail_ct] = i; // suppose indices are flat
915  Address addr(1);
916  addr.labels[0] = i;
917  (*address2os)[avail_ct++] = AddrUnsPair(addr, i);
918  }
919  if (__kmp_affinity_verbose) {
920  KMP_INFORM(OSProcToPackage, "KMP_AFFINITY");
921  }
922 
923  if (__kmp_affinity_gran_levels < 0) {
924  // Only the package level is modeled in the machine topology map,
925  // so the #levels of granularity is either 0 or 1.
926  if (__kmp_affinity_gran > affinity_gran_package) {
927  __kmp_affinity_gran_levels = 1;
928  } else {
929  __kmp_affinity_gran_levels = 0;
930  }
931  }
932  return 1;
933 }
934 
935 #if KMP_GROUP_AFFINITY
936 
937 // If multiple Windows* OS processor groups exist, we can create a 2-level
938 // topology map with the groups at level 0 and the individual procs at level 1.
939 // This facilitates letting the threads float among all procs in a group,
940 // if granularity=group (the default when there are multiple groups).
941 static int __kmp_affinity_create_proc_group_map(AddrUnsPair **address2os,
942  kmp_i18n_id_t *const msg_id) {
943  *address2os = NULL;
944  *msg_id = kmp_i18n_null;
945 
946  // If we aren't affinity capable, then return now.
947  // The flat mapping will be used.
948  if (!KMP_AFFINITY_CAPABLE()) {
949  // FIXME set *msg_id
950  return -1;
951  }
952 
953  // Construct the data structure to be returned.
954  *address2os =
955  (AddrUnsPair *)__kmp_allocate(sizeof(**address2os) * __kmp_avail_proc);
956  KMP_DEBUG_ASSERT(__kmp_pu_os_idx == NULL);
957  __kmp_pu_os_idx = (int *)__kmp_allocate(sizeof(int) * __kmp_avail_proc);
958  int avail_ct = 0;
959  int i;
960  KMP_CPU_SET_ITERATE(i, __kmp_affin_fullMask) {
961  // Skip this proc if it is not included in the machine model.
962  if (!KMP_CPU_ISSET(i, __kmp_affin_fullMask)) {
963  continue;
964  }
965  __kmp_pu_os_idx[avail_ct] = i; // suppose indices are flat
966  Address addr(2);
967  addr.labels[0] = i / (CHAR_BIT * sizeof(DWORD_PTR));
968  addr.labels[1] = i % (CHAR_BIT * sizeof(DWORD_PTR));
969  (*address2os)[avail_ct++] = AddrUnsPair(addr, i);
970 
971  if (__kmp_affinity_verbose) {
972  KMP_INFORM(AffOSProcToGroup, "KMP_AFFINITY", i, addr.labels[0],
973  addr.labels[1]);
974  }
975  }
976 
977  if (__kmp_affinity_gran_levels < 0) {
978  if (__kmp_affinity_gran == affinity_gran_group) {
979  __kmp_affinity_gran_levels = 1;
980  } else if ((__kmp_affinity_gran == affinity_gran_fine) ||
981  (__kmp_affinity_gran == affinity_gran_thread)) {
982  __kmp_affinity_gran_levels = 0;
983  } else {
984  const char *gran_str = NULL;
985  if (__kmp_affinity_gran == affinity_gran_core) {
986  gran_str = "core";
987  } else if (__kmp_affinity_gran == affinity_gran_package) {
988  gran_str = "package";
989  } else if (__kmp_affinity_gran == affinity_gran_node) {
990  gran_str = "node";
991  } else {
992  KMP_ASSERT(0);
993  }
994 
995  // Warning: can't use affinity granularity \"gran\" with group topology
996  // method, using "thread"
997  __kmp_affinity_gran_levels = 0;
998  }
999  }
1000  return 2;
1001 }
1002 
1003 #endif /* KMP_GROUP_AFFINITY */
1004 
1005 #if KMP_ARCH_X86 || KMP_ARCH_X86_64
1006 
1007 static int __kmp_cpuid_mask_width(int count) {
1008  int r = 0;
1009 
1010  while ((1 << r) < count)
1011  ++r;
1012  return r;
1013 }
1014 
1015 class apicThreadInfo {
1016 public:
1017  unsigned osId; // param to __kmp_affinity_bind_thread
1018  unsigned apicId; // from cpuid after binding
1019  unsigned maxCoresPerPkg; // ""
1020  unsigned maxThreadsPerPkg; // ""
1021  unsigned pkgId; // inferred from above values
1022  unsigned coreId; // ""
1023  unsigned threadId; // ""
1024 };
1025 
1026 static int __kmp_affinity_cmp_apicThreadInfo_phys_id(const void *a,
1027  const void *b) {
1028  const apicThreadInfo *aa = (const apicThreadInfo *)a;
1029  const apicThreadInfo *bb = (const apicThreadInfo *)b;
1030  if (aa->pkgId < bb->pkgId)
1031  return -1;
1032  if (aa->pkgId > bb->pkgId)
1033  return 1;
1034  if (aa->coreId < bb->coreId)
1035  return -1;
1036  if (aa->coreId > bb->coreId)
1037  return 1;
1038  if (aa->threadId < bb->threadId)
1039  return -1;
1040  if (aa->threadId > bb->threadId)
1041  return 1;
1042  return 0;
1043 }
1044 
1045 // On IA-32 architecture and Intel(R) 64 architecture, we attempt to use
1046 // an algorithm which cycles through the available os threads, setting
1047 // the current thread's affinity mask to that thread, and then retrieves
1048 // the Apic Id for each thread context using the cpuid instruction.
1049 static int __kmp_affinity_create_apicid_map(AddrUnsPair **address2os,
1050  kmp_i18n_id_t *const msg_id) {
1051  kmp_cpuid buf;
1052  *address2os = NULL;
1053  *msg_id = kmp_i18n_null;
1054 
1055  // Check if cpuid leaf 4 is supported.
1056  __kmp_x86_cpuid(0, 0, &buf);
1057  if (buf.eax < 4) {
1058  *msg_id = kmp_i18n_str_NoLeaf4Support;
1059  return -1;
1060  }
1061 
1062  // The algorithm used starts by setting the affinity to each available thread
1063  // and retrieving info from the cpuid instruction, so if we are not capable of
1064  // calling __kmp_get_system_affinity() and _kmp_get_system_affinity(), then we
1065  // need to do something else - use the defaults that we calculated from
1066  // issuing cpuid without binding to each proc.
1067  if (!KMP_AFFINITY_CAPABLE()) {
1068  // Hack to try and infer the machine topology using only the data
1069  // available from cpuid on the current thread, and __kmp_xproc.
1070  KMP_ASSERT(__kmp_affinity_type == affinity_none);
1071 
1072  // Get an upper bound on the number of threads per package using cpuid(1).
1073  // On some OS/chps combinations where HT is supported by the chip but is
1074  // disabled, this value will be 2 on a single core chip. Usually, it will be
1075  // 2 if HT is enabled and 1 if HT is disabled.
1076  __kmp_x86_cpuid(1, 0, &buf);
1077  int maxThreadsPerPkg = (buf.ebx >> 16) & 0xff;
1078  if (maxThreadsPerPkg == 0) {
1079  maxThreadsPerPkg = 1;
1080  }
1081 
1082  // The num cores per pkg comes from cpuid(4). 1 must be added to the encoded
1083  // value.
1084  //
1085  // The author of cpu_count.cpp treated this only an upper bound on the
1086  // number of cores, but I haven't seen any cases where it was greater than
1087  // the actual number of cores, so we will treat it as exact in this block of
1088  // code.
1089  //
1090  // First, we need to check if cpuid(4) is supported on this chip. To see if
1091  // cpuid(n) is supported, issue cpuid(0) and check if eax has the value n or
1092  // greater.
1093  __kmp_x86_cpuid(0, 0, &buf);
1094  if (buf.eax >= 4) {
1095  __kmp_x86_cpuid(4, 0, &buf);
1096  nCoresPerPkg = ((buf.eax >> 26) & 0x3f) + 1;
1097  } else {
1098  nCoresPerPkg = 1;
1099  }
1100 
1101  // There is no way to reliably tell if HT is enabled without issuing the
1102  // cpuid instruction from every thread, can correlating the cpuid info, so
1103  // if the machine is not affinity capable, we assume that HT is off. We have
1104  // seen quite a few machines where maxThreadsPerPkg is 2, yet the machine
1105  // does not support HT.
1106  //
1107  // - Older OSes are usually found on machines with older chips, which do not
1108  // support HT.
1109  // - The performance penalty for mistakenly identifying a machine as HT when
1110  // it isn't (which results in blocktime being incorrectly set to 0) is
1111  // greater than the penalty when for mistakenly identifying a machine as
1112  // being 1 thread/core when it is really HT enabled (which results in
1113  // blocktime being incorrectly set to a positive value).
1114  __kmp_ncores = __kmp_xproc;
1115  nPackages = (__kmp_xproc + nCoresPerPkg - 1) / nCoresPerPkg;
1116  __kmp_nThreadsPerCore = 1;
1117  if (__kmp_affinity_verbose) {
1118  KMP_INFORM(AffNotCapableUseLocCpuid, "KMP_AFFINITY");
1119  KMP_INFORM(AvailableOSProc, "KMP_AFFINITY", __kmp_avail_proc);
1120  if (__kmp_affinity_uniform_topology()) {
1121  KMP_INFORM(Uniform, "KMP_AFFINITY");
1122  } else {
1123  KMP_INFORM(NonUniform, "KMP_AFFINITY");
1124  }
1125  KMP_INFORM(Topology, "KMP_AFFINITY", nPackages, nCoresPerPkg,
1126  __kmp_nThreadsPerCore, __kmp_ncores);
1127  }
1128  return 0;
1129  }
1130 
1131  // From here on, we can assume that it is safe to call
1132  // __kmp_get_system_affinity() and __kmp_set_system_affinity(), even if
1133  // __kmp_affinity_type = affinity_none.
1134 
1135  // Save the affinity mask for the current thread.
1136  kmp_affin_mask_t *oldMask;
1137  KMP_CPU_ALLOC(oldMask);
1138  KMP_ASSERT(oldMask != NULL);
1139  __kmp_get_system_affinity(oldMask, TRUE);
1140 
1141  // Run through each of the available contexts, binding the current thread
1142  // to it, and obtaining the pertinent information using the cpuid instr.
1143  //
1144  // The relevant information is:
1145  // - Apic Id: Bits 24:31 of ebx after issuing cpuid(1) - each thread context
1146  // has a uniqie Apic Id, which is of the form pkg# : core# : thread#.
1147  // - Max Threads Per Pkg: Bits 16:23 of ebx after issuing cpuid(1). The value
1148  // of this field determines the width of the core# + thread# fields in the
1149  // Apic Id. It is also an upper bound on the number of threads per
1150  // package, but it has been verified that situations happen were it is not
1151  // exact. In particular, on certain OS/chip combinations where Intel(R)
1152  // Hyper-Threading Technology is supported by the chip but has been
1153  // disabled, the value of this field will be 2 (for a single core chip).
1154  // On other OS/chip combinations supporting Intel(R) Hyper-Threading
1155  // Technology, the value of this field will be 1 when Intel(R)
1156  // Hyper-Threading Technology is disabled and 2 when it is enabled.
1157  // - Max Cores Per Pkg: Bits 26:31 of eax after issuing cpuid(4). The value
1158  // of this field (+1) determines the width of the core# field in the Apic
1159  // Id. The comments in "cpucount.cpp" say that this value is an upper
1160  // bound, but the IA-32 architecture manual says that it is exactly the
1161  // number of cores per package, and I haven't seen any case where it
1162  // wasn't.
1163  //
1164  // From this information, deduce the package Id, core Id, and thread Id,
1165  // and set the corresponding fields in the apicThreadInfo struct.
1166  unsigned i;
1167  apicThreadInfo *threadInfo = (apicThreadInfo *)__kmp_allocate(
1168  __kmp_avail_proc * sizeof(apicThreadInfo));
1169  unsigned nApics = 0;
1170  KMP_CPU_SET_ITERATE(i, __kmp_affin_fullMask) {
1171  // Skip this proc if it is not included in the machine model.
1172  if (!KMP_CPU_ISSET(i, __kmp_affin_fullMask)) {
1173  continue;
1174  }
1175  KMP_DEBUG_ASSERT((int)nApics < __kmp_avail_proc);
1176 
1177  __kmp_affinity_dispatch->bind_thread(i);
1178  threadInfo[nApics].osId = i;
1179 
1180  // The apic id and max threads per pkg come from cpuid(1).
1181  __kmp_x86_cpuid(1, 0, &buf);
1182  if (((buf.edx >> 9) & 1) == 0) {
1183  __kmp_set_system_affinity(oldMask, TRUE);
1184  __kmp_free(threadInfo);
1185  KMP_CPU_FREE(oldMask);
1186  *msg_id = kmp_i18n_str_ApicNotPresent;
1187  return -1;
1188  }
1189  threadInfo[nApics].apicId = (buf.ebx >> 24) & 0xff;
1190  threadInfo[nApics].maxThreadsPerPkg = (buf.ebx >> 16) & 0xff;
1191  if (threadInfo[nApics].maxThreadsPerPkg == 0) {
1192  threadInfo[nApics].maxThreadsPerPkg = 1;
1193  }
1194 
1195  // Max cores per pkg comes from cpuid(4). 1 must be added to the encoded
1196  // value.
1197  //
1198  // First, we need to check if cpuid(4) is supported on this chip. To see if
1199  // cpuid(n) is supported, issue cpuid(0) and check if eax has the value n
1200  // or greater.
1201  __kmp_x86_cpuid(0, 0, &buf);
1202  if (buf.eax >= 4) {
1203  __kmp_x86_cpuid(4, 0, &buf);
1204  threadInfo[nApics].maxCoresPerPkg = ((buf.eax >> 26) & 0x3f) + 1;
1205  } else {
1206  threadInfo[nApics].maxCoresPerPkg = 1;
1207  }
1208 
1209  // Infer the pkgId / coreId / threadId using only the info obtained locally.
1210  int widthCT = __kmp_cpuid_mask_width(threadInfo[nApics].maxThreadsPerPkg);
1211  threadInfo[nApics].pkgId = threadInfo[nApics].apicId >> widthCT;
1212 
1213  int widthC = __kmp_cpuid_mask_width(threadInfo[nApics].maxCoresPerPkg);
1214  int widthT = widthCT - widthC;
1215  if (widthT < 0) {
1216  // I've never seen this one happen, but I suppose it could, if the cpuid
1217  // instruction on a chip was really screwed up. Make sure to restore the
1218  // affinity mask before the tail call.
1219  __kmp_set_system_affinity(oldMask, TRUE);
1220  __kmp_free(threadInfo);
1221  KMP_CPU_FREE(oldMask);
1222  *msg_id = kmp_i18n_str_InvalidCpuidInfo;
1223  return -1;
1224  }
1225 
1226  int maskC = (1 << widthC) - 1;
1227  threadInfo[nApics].coreId = (threadInfo[nApics].apicId >> widthT) & maskC;
1228 
1229  int maskT = (1 << widthT) - 1;
1230  threadInfo[nApics].threadId = threadInfo[nApics].apicId & maskT;
1231 
1232  nApics++;
1233  }
1234 
1235  // We've collected all the info we need.
1236  // Restore the old affinity mask for this thread.
1237  __kmp_set_system_affinity(oldMask, TRUE);
1238 
1239  // If there's only one thread context to bind to, form an Address object
1240  // with depth 1 and return immediately (or, if affinity is off, set
1241  // address2os to NULL and return).
1242  //
1243  // If it is configured to omit the package level when there is only a single
1244  // package, the logic at the end of this routine won't work if there is only
1245  // a single thread - it would try to form an Address object with depth 0.
1246  KMP_ASSERT(nApics > 0);
1247  if (nApics == 1) {
1248  __kmp_ncores = nPackages = 1;
1249  __kmp_nThreadsPerCore = nCoresPerPkg = 1;
1250  if (__kmp_affinity_verbose) {
1251  KMP_INFORM(AffUseGlobCpuid, "KMP_AFFINITY");
1252  KMP_INFORM(AvailableOSProc, "KMP_AFFINITY", __kmp_avail_proc);
1253  KMP_INFORM(Uniform, "KMP_AFFINITY");
1254  KMP_INFORM(Topology, "KMP_AFFINITY", nPackages, nCoresPerPkg,
1255  __kmp_nThreadsPerCore, __kmp_ncores);
1256  }
1257 
1258  if (__kmp_affinity_type == affinity_none) {
1259  __kmp_free(threadInfo);
1260  KMP_CPU_FREE(oldMask);
1261  return 0;
1262  }
1263 
1264  *address2os = (AddrUnsPair *)__kmp_allocate(sizeof(AddrUnsPair));
1265  Address addr(1);
1266  addr.labels[0] = threadInfo[0].pkgId;
1267  (*address2os)[0] = AddrUnsPair(addr, threadInfo[0].osId);
1268 
1269  if (__kmp_affinity_gran_levels < 0) {
1270  __kmp_affinity_gran_levels = 0;
1271  }
1272 
1273  if (__kmp_affinity_verbose) {
1274  __kmp_affinity_print_topology(*address2os, 1, 1, 0, -1, -1);
1275  }
1276 
1277  __kmp_free(threadInfo);
1278  KMP_CPU_FREE(oldMask);
1279  return 1;
1280  }
1281 
1282  // Sort the threadInfo table by physical Id.
1283  qsort(threadInfo, nApics, sizeof(*threadInfo),
1284  __kmp_affinity_cmp_apicThreadInfo_phys_id);
1285 
1286  // The table is now sorted by pkgId / coreId / threadId, but we really don't
1287  // know the radix of any of the fields. pkgId's may be sparsely assigned among
1288  // the chips on a system. Although coreId's are usually assigned
1289  // [0 .. coresPerPkg-1] and threadId's are usually assigned
1290  // [0..threadsPerCore-1], we don't want to make any such assumptions.
1291  //
1292  // For that matter, we don't know what coresPerPkg and threadsPerCore (or the
1293  // total # packages) are at this point - we want to determine that now. We
1294  // only have an upper bound on the first two figures.
1295  //
1296  // We also perform a consistency check at this point: the values returned by
1297  // the cpuid instruction for any thread bound to a given package had better
1298  // return the same info for maxThreadsPerPkg and maxCoresPerPkg.
1299  nPackages = 1;
1300  nCoresPerPkg = 1;
1301  __kmp_nThreadsPerCore = 1;
1302  unsigned nCores = 1;
1303 
1304  unsigned pkgCt = 1; // to determine radii
1305  unsigned lastPkgId = threadInfo[0].pkgId;
1306  unsigned coreCt = 1;
1307  unsigned lastCoreId = threadInfo[0].coreId;
1308  unsigned threadCt = 1;
1309  unsigned lastThreadId = threadInfo[0].threadId;
1310 
1311  // intra-pkg consist checks
1312  unsigned prevMaxCoresPerPkg = threadInfo[0].maxCoresPerPkg;
1313  unsigned prevMaxThreadsPerPkg = threadInfo[0].maxThreadsPerPkg;
1314 
1315  for (i = 1; i < nApics; i++) {
1316  if (threadInfo[i].pkgId != lastPkgId) {
1317  nCores++;
1318  pkgCt++;
1319  lastPkgId = threadInfo[i].pkgId;
1320  if ((int)coreCt > nCoresPerPkg)
1321  nCoresPerPkg = coreCt;
1322  coreCt = 1;
1323  lastCoreId = threadInfo[i].coreId;
1324  if ((int)threadCt > __kmp_nThreadsPerCore)
1325  __kmp_nThreadsPerCore = threadCt;
1326  threadCt = 1;
1327  lastThreadId = threadInfo[i].threadId;
1328 
1329  // This is a different package, so go on to the next iteration without
1330  // doing any consistency checks. Reset the consistency check vars, though.
1331  prevMaxCoresPerPkg = threadInfo[i].maxCoresPerPkg;
1332  prevMaxThreadsPerPkg = threadInfo[i].maxThreadsPerPkg;
1333  continue;
1334  }
1335 
1336  if (threadInfo[i].coreId != lastCoreId) {
1337  nCores++;
1338  coreCt++;
1339  lastCoreId = threadInfo[i].coreId;
1340  if ((int)threadCt > __kmp_nThreadsPerCore)
1341  __kmp_nThreadsPerCore = threadCt;
1342  threadCt = 1;
1343  lastThreadId = threadInfo[i].threadId;
1344  } else if (threadInfo[i].threadId != lastThreadId) {
1345  threadCt++;
1346  lastThreadId = threadInfo[i].threadId;
1347  } else {
1348  __kmp_free(threadInfo);
1349  KMP_CPU_FREE(oldMask);
1350  *msg_id = kmp_i18n_str_LegacyApicIDsNotUnique;
1351  return -1;
1352  }
1353 
1354  // Check to make certain that the maxCoresPerPkg and maxThreadsPerPkg
1355  // fields agree between all the threads bounds to a given package.
1356  if ((prevMaxCoresPerPkg != threadInfo[i].maxCoresPerPkg) ||
1357  (prevMaxThreadsPerPkg != threadInfo[i].maxThreadsPerPkg)) {
1358  __kmp_free(threadInfo);
1359  KMP_CPU_FREE(oldMask);
1360  *msg_id = kmp_i18n_str_InconsistentCpuidInfo;
1361  return -1;
1362  }
1363  }
1364  nPackages = pkgCt;
1365  if ((int)coreCt > nCoresPerPkg)
1366  nCoresPerPkg = coreCt;
1367  if ((int)threadCt > __kmp_nThreadsPerCore)
1368  __kmp_nThreadsPerCore = threadCt;
1369 
1370  // When affinity is off, this routine will still be called to set
1371  // __kmp_ncores, as well as __kmp_nThreadsPerCore, nCoresPerPkg, & nPackages.
1372  // Make sure all these vars are set correctly, and return now if affinity is
1373  // not enabled.
1374  __kmp_ncores = nCores;
1375  if (__kmp_affinity_verbose) {
1376  KMP_INFORM(AffUseGlobCpuid, "KMP_AFFINITY");
1377  KMP_INFORM(AvailableOSProc, "KMP_AFFINITY", __kmp_avail_proc);
1378  if (__kmp_affinity_uniform_topology()) {
1379  KMP_INFORM(Uniform, "KMP_AFFINITY");
1380  } else {
1381  KMP_INFORM(NonUniform, "KMP_AFFINITY");
1382  }
1383  KMP_INFORM(Topology, "KMP_AFFINITY", nPackages, nCoresPerPkg,
1384  __kmp_nThreadsPerCore, __kmp_ncores);
1385  }
1386  KMP_DEBUG_ASSERT(__kmp_pu_os_idx == NULL);
1387  KMP_DEBUG_ASSERT(nApics == (unsigned)__kmp_avail_proc);
1388  __kmp_pu_os_idx = (int *)__kmp_allocate(sizeof(int) * __kmp_avail_proc);
1389  for (i = 0; i < nApics; ++i) {
1390  __kmp_pu_os_idx[i] = threadInfo[i].osId;
1391  }
1392  if (__kmp_affinity_type == affinity_none) {
1393  __kmp_free(threadInfo);
1394  KMP_CPU_FREE(oldMask);
1395  return 0;
1396  }
1397 
1398  // Now that we've determined the number of packages, the number of cores per
1399  // package, and the number of threads per core, we can construct the data
1400  // structure that is to be returned.
1401  int pkgLevel = 0;
1402  int coreLevel = (nCoresPerPkg <= 1) ? -1 : 1;
1403  int threadLevel =
1404  (__kmp_nThreadsPerCore <= 1) ? -1 : ((coreLevel >= 0) ? 2 : 1);
1405  unsigned depth = (pkgLevel >= 0) + (coreLevel >= 0) + (threadLevel >= 0);
1406 
1407  KMP_ASSERT(depth > 0);
1408  *address2os = (AddrUnsPair *)__kmp_allocate(sizeof(AddrUnsPair) * nApics);
1409 
1410  for (i = 0; i < nApics; ++i) {
1411  Address addr(depth);
1412  unsigned os = threadInfo[i].osId;
1413  int d = 0;
1414 
1415  if (pkgLevel >= 0) {
1416  addr.labels[d++] = threadInfo[i].pkgId;
1417  }
1418  if (coreLevel >= 0) {
1419  addr.labels[d++] = threadInfo[i].coreId;
1420  }
1421  if (threadLevel >= 0) {
1422  addr.labels[d++] = threadInfo[i].threadId;
1423  }
1424  (*address2os)[i] = AddrUnsPair(addr, os);
1425  }
1426 
1427  if (__kmp_affinity_gran_levels < 0) {
1428  // Set the granularity level based on what levels are modeled in the machine
1429  // topology map.
1430  __kmp_affinity_gran_levels = 0;
1431  if ((threadLevel >= 0) && (__kmp_affinity_gran > affinity_gran_thread)) {
1432  __kmp_affinity_gran_levels++;
1433  }
1434  if ((coreLevel >= 0) && (__kmp_affinity_gran > affinity_gran_core)) {
1435  __kmp_affinity_gran_levels++;
1436  }
1437  if ((pkgLevel >= 0) && (__kmp_affinity_gran > affinity_gran_package)) {
1438  __kmp_affinity_gran_levels++;
1439  }
1440  }
1441 
1442  if (__kmp_affinity_verbose) {
1443  __kmp_affinity_print_topology(*address2os, nApics, depth, pkgLevel,
1444  coreLevel, threadLevel);
1445  }
1446 
1447  __kmp_free(threadInfo);
1448  KMP_CPU_FREE(oldMask);
1449  return depth;
1450 }
1451 
1452 // Intel(R) microarchitecture code name Nehalem, Dunnington and later
1453 // architectures support a newer interface for specifying the x2APIC Ids,
1454 // based on cpuid leaf 11.
1455 static int __kmp_affinity_create_x2apicid_map(AddrUnsPair **address2os,
1456  kmp_i18n_id_t *const msg_id) {
1457  kmp_cpuid buf;
1458  *address2os = NULL;
1459  *msg_id = kmp_i18n_null;
1460 
1461  // Check to see if cpuid leaf 11 is supported.
1462  __kmp_x86_cpuid(0, 0, &buf);
1463  if (buf.eax < 11) {
1464  *msg_id = kmp_i18n_str_NoLeaf11Support;
1465  return -1;
1466  }
1467  __kmp_x86_cpuid(11, 0, &buf);
1468  if (buf.ebx == 0) {
1469  *msg_id = kmp_i18n_str_NoLeaf11Support;
1470  return -1;
1471  }
1472 
1473  // Find the number of levels in the machine topology. While we're at it, get
1474  // the default values for __kmp_nThreadsPerCore & nCoresPerPkg. We will try to
1475  // get more accurate values later by explicitly counting them, but get
1476  // reasonable defaults now, in case we return early.
1477  int level;
1478  int threadLevel = -1;
1479  int coreLevel = -1;
1480  int pkgLevel = -1;
1481  __kmp_nThreadsPerCore = nCoresPerPkg = nPackages = 1;
1482 
1483  for (level = 0;; level++) {
1484  if (level > 31) {
1485  // FIXME: Hack for DPD200163180
1486  //
1487  // If level is big then something went wrong -> exiting
1488  //
1489  // There could actually be 32 valid levels in the machine topology, but so
1490  // far, the only machine we have seen which does not exit this loop before
1491  // iteration 32 has fubar x2APIC settings.
1492  //
1493  // For now, just reject this case based upon loop trip count.
1494  *msg_id = kmp_i18n_str_InvalidCpuidInfo;
1495  return -1;
1496  }
1497  __kmp_x86_cpuid(11, level, &buf);
1498  if (buf.ebx == 0) {
1499  if (pkgLevel < 0) {
1500  // Will infer nPackages from __kmp_xproc
1501  pkgLevel = level;
1502  level++;
1503  }
1504  break;
1505  }
1506  int kind = (buf.ecx >> 8) & 0xff;
1507  if (kind == 1) {
1508  // SMT level
1509  threadLevel = level;
1510  coreLevel = -1;
1511  pkgLevel = -1;
1512  __kmp_nThreadsPerCore = buf.ebx & 0xffff;
1513  if (__kmp_nThreadsPerCore == 0) {
1514  *msg_id = kmp_i18n_str_InvalidCpuidInfo;
1515  return -1;
1516  }
1517  } else if (kind == 2) {
1518  // core level
1519  coreLevel = level;
1520  pkgLevel = -1;
1521  nCoresPerPkg = buf.ebx & 0xffff;
1522  if (nCoresPerPkg == 0) {
1523  *msg_id = kmp_i18n_str_InvalidCpuidInfo;
1524  return -1;
1525  }
1526  } else {
1527  if (level <= 0) {
1528  *msg_id = kmp_i18n_str_InvalidCpuidInfo;
1529  return -1;
1530  }
1531  if (pkgLevel >= 0) {
1532  continue;
1533  }
1534  pkgLevel = level;
1535  nPackages = buf.ebx & 0xffff;
1536  if (nPackages == 0) {
1537  *msg_id = kmp_i18n_str_InvalidCpuidInfo;
1538  return -1;
1539  }
1540  }
1541  }
1542  int depth = level;
1543 
1544  // In the above loop, "level" was counted from the finest level (usually
1545  // thread) to the coarsest. The caller expects that we will place the labels
1546  // in (*address2os)[].first.labels[] in the inverse order, so we need to
1547  // invert the vars saying which level means what.
1548  if (threadLevel >= 0) {
1549  threadLevel = depth - threadLevel - 1;
1550  }
1551  if (coreLevel >= 0) {
1552  coreLevel = depth - coreLevel - 1;
1553  }
1554  KMP_DEBUG_ASSERT(pkgLevel >= 0);
1555  pkgLevel = depth - pkgLevel - 1;
1556 
1557  // The algorithm used starts by setting the affinity to each available thread
1558  // and retrieving info from the cpuid instruction, so if we are not capable of
1559  // calling __kmp_get_system_affinity() and _kmp_get_system_affinity(), then we
1560  // need to do something else - use the defaults that we calculated from
1561  // issuing cpuid without binding to each proc.
1562  if (!KMP_AFFINITY_CAPABLE()) {
1563  // Hack to try and infer the machine topology using only the data
1564  // available from cpuid on the current thread, and __kmp_xproc.
1565  KMP_ASSERT(__kmp_affinity_type == affinity_none);
1566 
1567  __kmp_ncores = __kmp_xproc / __kmp_nThreadsPerCore;
1568  nPackages = (__kmp_xproc + nCoresPerPkg - 1) / nCoresPerPkg;
1569  if (__kmp_affinity_verbose) {
1570  KMP_INFORM(AffNotCapableUseLocCpuidL11, "KMP_AFFINITY");
1571  KMP_INFORM(AvailableOSProc, "KMP_AFFINITY", __kmp_avail_proc);
1572  if (__kmp_affinity_uniform_topology()) {
1573  KMP_INFORM(Uniform, "KMP_AFFINITY");
1574  } else {
1575  KMP_INFORM(NonUniform, "KMP_AFFINITY");
1576  }
1577  KMP_INFORM(Topology, "KMP_AFFINITY", nPackages, nCoresPerPkg,
1578  __kmp_nThreadsPerCore, __kmp_ncores);
1579  }
1580  return 0;
1581  }
1582 
1583  // From here on, we can assume that it is safe to call
1584  // __kmp_get_system_affinity() and __kmp_set_system_affinity(), even if
1585  // __kmp_affinity_type = affinity_none.
1586 
1587  // Save the affinity mask for the current thread.
1588  kmp_affin_mask_t *oldMask;
1589  KMP_CPU_ALLOC(oldMask);
1590  __kmp_get_system_affinity(oldMask, TRUE);
1591 
1592  // Allocate the data structure to be returned.
1593  AddrUnsPair *retval =
1594  (AddrUnsPair *)__kmp_allocate(sizeof(AddrUnsPair) * __kmp_avail_proc);
1595 
1596  // Run through each of the available contexts, binding the current thread
1597  // to it, and obtaining the pertinent information using the cpuid instr.
1598  unsigned int proc;
1599  int nApics = 0;
1600  KMP_CPU_SET_ITERATE(proc, __kmp_affin_fullMask) {
1601  // Skip this proc if it is not included in the machine model.
1602  if (!KMP_CPU_ISSET(proc, __kmp_affin_fullMask)) {
1603  continue;
1604  }
1605  KMP_DEBUG_ASSERT(nApics < __kmp_avail_proc);
1606 
1607  __kmp_affinity_dispatch->bind_thread(proc);
1608 
1609  // Extract labels for each level in the machine topology map from Apic ID.
1610  Address addr(depth);
1611  int prev_shift = 0;
1612 
1613  for (level = 0; level < depth; level++) {
1614  __kmp_x86_cpuid(11, level, &buf);
1615  unsigned apicId = buf.edx;
1616  if (buf.ebx == 0) {
1617  if (level != depth - 1) {
1618  KMP_CPU_FREE(oldMask);
1619  *msg_id = kmp_i18n_str_InconsistentCpuidInfo;
1620  return -1;
1621  }
1622  addr.labels[depth - level - 1] = apicId >> prev_shift;
1623  level++;
1624  break;
1625  }
1626  int shift = buf.eax & 0x1f;
1627  int mask = (1 << shift) - 1;
1628  addr.labels[depth - level - 1] = (apicId & mask) >> prev_shift;
1629  prev_shift = shift;
1630  }
1631  if (level != depth) {
1632  KMP_CPU_FREE(oldMask);
1633  *msg_id = kmp_i18n_str_InconsistentCpuidInfo;
1634  return -1;
1635  }
1636 
1637  retval[nApics] = AddrUnsPair(addr, proc);
1638  nApics++;
1639  }
1640 
1641  // We've collected all the info we need.
1642  // Restore the old affinity mask for this thread.
1643  __kmp_set_system_affinity(oldMask, TRUE);
1644 
1645  // If there's only one thread context to bind to, return now.
1646  KMP_ASSERT(nApics > 0);
1647  if (nApics == 1) {
1648  __kmp_ncores = nPackages = 1;
1649  __kmp_nThreadsPerCore = nCoresPerPkg = 1;
1650  if (__kmp_affinity_verbose) {
1651  KMP_INFORM(AffUseGlobCpuidL11, "KMP_AFFINITY");
1652  KMP_INFORM(AvailableOSProc, "KMP_AFFINITY", __kmp_avail_proc);
1653  KMP_INFORM(Uniform, "KMP_AFFINITY");
1654  KMP_INFORM(Topology, "KMP_AFFINITY", nPackages, nCoresPerPkg,
1655  __kmp_nThreadsPerCore, __kmp_ncores);
1656  }
1657 
1658  if (__kmp_affinity_type == affinity_none) {
1659  __kmp_free(retval);
1660  KMP_CPU_FREE(oldMask);
1661  return 0;
1662  }
1663 
1664  // Form an Address object which only includes the package level.
1665  Address addr(1);
1666  addr.labels[0] = retval[0].first.labels[pkgLevel];
1667  retval[0].first = addr;
1668 
1669  if (__kmp_affinity_gran_levels < 0) {
1670  __kmp_affinity_gran_levels = 0;
1671  }
1672 
1673  if (__kmp_affinity_verbose) {
1674  __kmp_affinity_print_topology(retval, 1, 1, 0, -1, -1);
1675  }
1676 
1677  *address2os = retval;
1678  KMP_CPU_FREE(oldMask);
1679  return 1;
1680  }
1681 
1682  // Sort the table by physical Id.
1683  qsort(retval, nApics, sizeof(*retval), __kmp_affinity_cmp_Address_labels);
1684 
1685  // Find the radix at each of the levels.
1686  unsigned *totals = (unsigned *)__kmp_allocate(depth * sizeof(unsigned));
1687  unsigned *counts = (unsigned *)__kmp_allocate(depth * sizeof(unsigned));
1688  unsigned *maxCt = (unsigned *)__kmp_allocate(depth * sizeof(unsigned));
1689  unsigned *last = (unsigned *)__kmp_allocate(depth * sizeof(unsigned));
1690  for (level = 0; level < depth; level++) {
1691  totals[level] = 1;
1692  maxCt[level] = 1;
1693  counts[level] = 1;
1694  last[level] = retval[0].first.labels[level];
1695  }
1696 
1697  // From here on, the iteration variable "level" runs from the finest level to
1698  // the coarsest, i.e. we iterate forward through
1699  // (*address2os)[].first.labels[] - in the previous loops, we iterated
1700  // backwards.
1701  for (proc = 1; (int)proc < nApics; proc++) {
1702  int level;
1703  for (level = 0; level < depth; level++) {
1704  if (retval[proc].first.labels[level] != last[level]) {
1705  int j;
1706  for (j = level + 1; j < depth; j++) {
1707  totals[j]++;
1708  counts[j] = 1;
1709  // The line below causes printing incorrect topology information in
1710  // case the max value for some level (maxCt[level]) is encountered
1711  // earlier than some less value while going through the array. For
1712  // example, let pkg0 has 4 cores and pkg1 has 2 cores. Then
1713  // maxCt[1] == 2
1714  // whereas it must be 4.
1715  // TODO!!! Check if it can be commented safely
1716  // maxCt[j] = 1;
1717  last[j] = retval[proc].first.labels[j];
1718  }
1719  totals[level]++;
1720  counts[level]++;
1721  if (counts[level] > maxCt[level]) {
1722  maxCt[level] = counts[level];
1723  }
1724  last[level] = retval[proc].first.labels[level];
1725  break;
1726  } else if (level == depth - 1) {
1727  __kmp_free(last);
1728  __kmp_free(maxCt);
1729  __kmp_free(counts);
1730  __kmp_free(totals);
1731  __kmp_free(retval);
1732  KMP_CPU_FREE(oldMask);
1733  *msg_id = kmp_i18n_str_x2ApicIDsNotUnique;
1734  return -1;
1735  }
1736  }
1737  }
1738 
1739  // When affinity is off, this routine will still be called to set
1740  // __kmp_ncores, as well as __kmp_nThreadsPerCore, nCoresPerPkg, & nPackages.
1741  // Make sure all these vars are set correctly, and return if affinity is not
1742  // enabled.
1743  if (threadLevel >= 0) {
1744  __kmp_nThreadsPerCore = maxCt[threadLevel];
1745  } else {
1746  __kmp_nThreadsPerCore = 1;
1747  }
1748  nPackages = totals[pkgLevel];
1749 
1750  if (coreLevel >= 0) {
1751  __kmp_ncores = totals[coreLevel];
1752  nCoresPerPkg = maxCt[coreLevel];
1753  } else {
1754  __kmp_ncores = nPackages;
1755  nCoresPerPkg = 1;
1756  }
1757 
1758  // Check to see if the machine topology is uniform
1759  unsigned prod = maxCt[0];
1760  for (level = 1; level < depth; level++) {
1761  prod *= maxCt[level];
1762  }
1763  bool uniform = (prod == totals[level - 1]);
1764 
1765  // Print the machine topology summary.
1766  if (__kmp_affinity_verbose) {
1767  KMP_INFORM(AffUseGlobCpuidL11, "KMP_AFFINITY");
1768  KMP_INFORM(AvailableOSProc, "KMP_AFFINITY", __kmp_avail_proc);
1769  if (uniform) {
1770  KMP_INFORM(Uniform, "KMP_AFFINITY");
1771  } else {
1772  KMP_INFORM(NonUniform, "KMP_AFFINITY");
1773  }
1774 
1775  kmp_str_buf_t buf;
1776  __kmp_str_buf_init(&buf);
1777 
1778  __kmp_str_buf_print(&buf, "%d", totals[0]);
1779  for (level = 1; level <= pkgLevel; level++) {
1780  __kmp_str_buf_print(&buf, " x %d", maxCt[level]);
1781  }
1782  KMP_INFORM(TopologyExtra, "KMP_AFFINITY", buf.str, nCoresPerPkg,
1783  __kmp_nThreadsPerCore, __kmp_ncores);
1784 
1785  __kmp_str_buf_free(&buf);
1786  }
1787  KMP_DEBUG_ASSERT(__kmp_pu_os_idx == NULL);
1788  KMP_DEBUG_ASSERT(nApics == __kmp_avail_proc);
1789  __kmp_pu_os_idx = (int *)__kmp_allocate(sizeof(int) * __kmp_avail_proc);
1790  for (proc = 0; (int)proc < nApics; ++proc) {
1791  __kmp_pu_os_idx[proc] = retval[proc].second;
1792  }
1793  if (__kmp_affinity_type == affinity_none) {
1794  __kmp_free(last);
1795  __kmp_free(maxCt);
1796  __kmp_free(counts);
1797  __kmp_free(totals);
1798  __kmp_free(retval);
1799  KMP_CPU_FREE(oldMask);
1800  return 0;
1801  }
1802 
1803  // Find any levels with radix 1, and remove them from the map
1804  // (except for the package level).
1805  int new_depth = 0;
1806  for (level = 0; level < depth; level++) {
1807  if ((maxCt[level] == 1) && (level != pkgLevel)) {
1808  continue;
1809  }
1810  new_depth++;
1811  }
1812 
1813  // If we are removing any levels, allocate a new vector to return,
1814  // and copy the relevant information to it.
1815  if (new_depth != depth) {
1816  AddrUnsPair *new_retval =
1817  (AddrUnsPair *)__kmp_allocate(sizeof(AddrUnsPair) * nApics);
1818  for (proc = 0; (int)proc < nApics; proc++) {
1819  Address addr(new_depth);
1820  new_retval[proc] = AddrUnsPair(addr, retval[proc].second);
1821  }
1822  int new_level = 0;
1823  int newPkgLevel = -1;
1824  int newCoreLevel = -1;
1825  int newThreadLevel = -1;
1826  for (level = 0; level < depth; level++) {
1827  if ((maxCt[level] == 1) && (level != pkgLevel)) {
1828  // Remove this level. Never remove the package level
1829  continue;
1830  }
1831  if (level == pkgLevel) {
1832  newPkgLevel = new_level;
1833  }
1834  if (level == coreLevel) {
1835  newCoreLevel = new_level;
1836  }
1837  if (level == threadLevel) {
1838  newThreadLevel = new_level;
1839  }
1840  for (proc = 0; (int)proc < nApics; proc++) {
1841  new_retval[proc].first.labels[new_level] =
1842  retval[proc].first.labels[level];
1843  }
1844  new_level++;
1845  }
1846 
1847  __kmp_free(retval);
1848  retval = new_retval;
1849  depth = new_depth;
1850  pkgLevel = newPkgLevel;
1851  coreLevel = newCoreLevel;
1852  threadLevel = newThreadLevel;
1853  }
1854 
1855  if (__kmp_affinity_gran_levels < 0) {
1856  // Set the granularity level based on what levels are modeled
1857  // in the machine topology map.
1858  __kmp_affinity_gran_levels = 0;
1859  if ((threadLevel >= 0) && (__kmp_affinity_gran > affinity_gran_thread)) {
1860  __kmp_affinity_gran_levels++;
1861  }
1862  if ((coreLevel >= 0) && (__kmp_affinity_gran > affinity_gran_core)) {
1863  __kmp_affinity_gran_levels++;
1864  }
1865  if (__kmp_affinity_gran > affinity_gran_package) {
1866  __kmp_affinity_gran_levels++;
1867  }
1868  }
1869 
1870  if (__kmp_affinity_verbose) {
1871  __kmp_affinity_print_topology(retval, nApics, depth, pkgLevel, coreLevel,
1872  threadLevel);
1873  }
1874 
1875  __kmp_free(last);
1876  __kmp_free(maxCt);
1877  __kmp_free(counts);
1878  __kmp_free(totals);
1879  KMP_CPU_FREE(oldMask);
1880  *address2os = retval;
1881  return depth;
1882 }
1883 
1884 #endif /* KMP_ARCH_X86 || KMP_ARCH_X86_64 */
1885 
1886 #define osIdIndex 0
1887 #define threadIdIndex 1
1888 #define coreIdIndex 2
1889 #define pkgIdIndex 3
1890 #define nodeIdIndex 4
1891 
1892 typedef unsigned *ProcCpuInfo;
1893 static unsigned maxIndex = pkgIdIndex;
1894 
1895 static int __kmp_affinity_cmp_ProcCpuInfo_phys_id(const void *a,
1896  const void *b) {
1897  unsigned i;
1898  const unsigned *aa = *(unsigned *const *)a;
1899  const unsigned *bb = *(unsigned *const *)b;
1900  for (i = maxIndex;; i--) {
1901  if (aa[i] < bb[i])
1902  return -1;
1903  if (aa[i] > bb[i])
1904  return 1;
1905  if (i == osIdIndex)
1906  break;
1907  }
1908  return 0;
1909 }
1910 
1911 #if KMP_USE_HIER_SCHED
1912 // Set the array sizes for the hierarchy layers
1913 static void __kmp_dispatch_set_hierarchy_values() {
1914  // Set the maximum number of L1's to number of cores
1915  // Set the maximum number of L2's to to either number of cores / 2 for
1916  // Intel(R) Xeon Phi(TM) coprocessor formally codenamed Knights Landing
1917  // Or the number of cores for Intel(R) Xeon(R) processors
1918  // Set the maximum number of NUMA nodes and L3's to number of packages
1919  __kmp_hier_max_units[kmp_hier_layer_e::LAYER_THREAD + 1] =
1920  nPackages * nCoresPerPkg * __kmp_nThreadsPerCore;
1921  __kmp_hier_max_units[kmp_hier_layer_e::LAYER_L1 + 1] = __kmp_ncores;
1922 #if KMP_ARCH_X86_64 && (KMP_OS_LINUX || KMP_OS_FREEBSD || KMP_OS_WINDOWS) && \
1923  KMP_MIC_SUPPORTED
1924  if (__kmp_mic_type >= mic3)
1925  __kmp_hier_max_units[kmp_hier_layer_e::LAYER_L2 + 1] = __kmp_ncores / 2;
1926  else
1927 #endif // KMP_ARCH_X86_64 && (KMP_OS_LINUX || KMP_OS_WINDOWS)
1928  __kmp_hier_max_units[kmp_hier_layer_e::LAYER_L2 + 1] = __kmp_ncores;
1929  __kmp_hier_max_units[kmp_hier_layer_e::LAYER_L3 + 1] = nPackages;
1930  __kmp_hier_max_units[kmp_hier_layer_e::LAYER_NUMA + 1] = nPackages;
1931  __kmp_hier_max_units[kmp_hier_layer_e::LAYER_LOOP + 1] = 1;
1932  // Set the number of threads per unit
1933  // Number of hardware threads per L1/L2/L3/NUMA/LOOP
1934  __kmp_hier_threads_per[kmp_hier_layer_e::LAYER_THREAD + 1] = 1;
1935  __kmp_hier_threads_per[kmp_hier_layer_e::LAYER_L1 + 1] =
1936  __kmp_nThreadsPerCore;
1937 #if KMP_ARCH_X86_64 && (KMP_OS_LINUX || KMP_OS_FREEBSD || KMP_OS_WINDOWS) && \
1938  KMP_MIC_SUPPORTED
1939  if (__kmp_mic_type >= mic3)
1940  __kmp_hier_threads_per[kmp_hier_layer_e::LAYER_L2 + 1] =
1941  2 * __kmp_nThreadsPerCore;
1942  else
1943 #endif // KMP_ARCH_X86_64 && (KMP_OS_LINUX || KMP_OS_WINDOWS)
1944  __kmp_hier_threads_per[kmp_hier_layer_e::LAYER_L2 + 1] =
1945  __kmp_nThreadsPerCore;
1946  __kmp_hier_threads_per[kmp_hier_layer_e::LAYER_L3 + 1] =
1947  nCoresPerPkg * __kmp_nThreadsPerCore;
1948  __kmp_hier_threads_per[kmp_hier_layer_e::LAYER_NUMA + 1] =
1949  nCoresPerPkg * __kmp_nThreadsPerCore;
1950  __kmp_hier_threads_per[kmp_hier_layer_e::LAYER_LOOP + 1] =
1951  nPackages * nCoresPerPkg * __kmp_nThreadsPerCore;
1952 }
1953 
1954 // Return the index into the hierarchy for this tid and layer type (L1, L2, etc)
1955 // i.e., this thread's L1 or this thread's L2, etc.
1956 int __kmp_dispatch_get_index(int tid, kmp_hier_layer_e type) {
1957  int index = type + 1;
1958  int num_hw_threads = __kmp_hier_max_units[kmp_hier_layer_e::LAYER_THREAD + 1];
1959  KMP_DEBUG_ASSERT(type != kmp_hier_layer_e::LAYER_LAST);
1960  if (type == kmp_hier_layer_e::LAYER_THREAD)
1961  return tid;
1962  else if (type == kmp_hier_layer_e::LAYER_LOOP)
1963  return 0;
1964  KMP_DEBUG_ASSERT(__kmp_hier_max_units[index] != 0);
1965  if (tid >= num_hw_threads)
1966  tid = tid % num_hw_threads;
1967  return (tid / __kmp_hier_threads_per[index]) % __kmp_hier_max_units[index];
1968 }
1969 
1970 // Return the number of t1's per t2
1971 int __kmp_dispatch_get_t1_per_t2(kmp_hier_layer_e t1, kmp_hier_layer_e t2) {
1972  int i1 = t1 + 1;
1973  int i2 = t2 + 1;
1974  KMP_DEBUG_ASSERT(i1 <= i2);
1975  KMP_DEBUG_ASSERT(t1 != kmp_hier_layer_e::LAYER_LAST);
1976  KMP_DEBUG_ASSERT(t2 != kmp_hier_layer_e::LAYER_LAST);
1977  KMP_DEBUG_ASSERT(__kmp_hier_threads_per[i1] != 0);
1978  // (nthreads/t2) / (nthreads/t1) = t1 / t2
1979  return __kmp_hier_threads_per[i2] / __kmp_hier_threads_per[i1];
1980 }
1981 #endif // KMP_USE_HIER_SCHED
1982 
1983 // Parse /proc/cpuinfo (or an alternate file in the same format) to obtain the
1984 // affinity map.
1985 static int __kmp_affinity_create_cpuinfo_map(AddrUnsPair **address2os,
1986  int *line,
1987  kmp_i18n_id_t *const msg_id,
1988  FILE *f) {
1989  *address2os = NULL;
1990  *msg_id = kmp_i18n_null;
1991 
1992  // Scan of the file, and count the number of "processor" (osId) fields,
1993  // and find the highest value of <n> for a node_<n> field.
1994  char buf[256];
1995  unsigned num_records = 0;
1996  while (!feof(f)) {
1997  buf[sizeof(buf) - 1] = 1;
1998  if (!fgets(buf, sizeof(buf), f)) {
1999  // Read errors presumably because of EOF
2000  break;
2001  }
2002 
2003  char s1[] = "processor";
2004  if (strncmp(buf, s1, sizeof(s1) - 1) == 0) {
2005  num_records++;
2006  continue;
2007  }
2008 
2009  // FIXME - this will match "node_<n> <garbage>"
2010  unsigned level;
2011  if (KMP_SSCANF(buf, "node_%u id", &level) == 1) {
2012  if (nodeIdIndex + level >= maxIndex) {
2013  maxIndex = nodeIdIndex + level;
2014  }
2015  continue;
2016  }
2017  }
2018 
2019  // Check for empty file / no valid processor records, or too many. The number
2020  // of records can't exceed the number of valid bits in the affinity mask.
2021  if (num_records == 0) {
2022  *line = 0;
2023  *msg_id = kmp_i18n_str_NoProcRecords;
2024  return -1;
2025  }
2026  if (num_records > (unsigned)__kmp_xproc) {
2027  *line = 0;
2028  *msg_id = kmp_i18n_str_TooManyProcRecords;
2029  return -1;
2030  }
2031 
2032  // Set the file pointer back to the beginning, so that we can scan the file
2033  // again, this time performing a full parse of the data. Allocate a vector of
2034  // ProcCpuInfo object, where we will place the data. Adding an extra element
2035  // at the end allows us to remove a lot of extra checks for termination
2036  // conditions.
2037  if (fseek(f, 0, SEEK_SET) != 0) {
2038  *line = 0;
2039  *msg_id = kmp_i18n_str_CantRewindCpuinfo;
2040  return -1;
2041  }
2042 
2043  // Allocate the array of records to store the proc info in. The dummy
2044  // element at the end makes the logic in filling them out easier to code.
2045  unsigned **threadInfo =
2046  (unsigned **)__kmp_allocate((num_records + 1) * sizeof(unsigned *));
2047  unsigned i;
2048  for (i = 0; i <= num_records; i++) {
2049  threadInfo[i] =
2050  (unsigned *)__kmp_allocate((maxIndex + 1) * sizeof(unsigned));
2051  }
2052 
2053 #define CLEANUP_THREAD_INFO \
2054  for (i = 0; i <= num_records; i++) { \
2055  __kmp_free(threadInfo[i]); \
2056  } \
2057  __kmp_free(threadInfo);
2058 
2059  // A value of UINT_MAX means that we didn't find the field
2060  unsigned __index;
2061 
2062 #define INIT_PROC_INFO(p) \
2063  for (__index = 0; __index <= maxIndex; __index++) { \
2064  (p)[__index] = UINT_MAX; \
2065  }
2066 
2067  for (i = 0; i <= num_records; i++) {
2068  INIT_PROC_INFO(threadInfo[i]);
2069  }
2070 
2071  unsigned num_avail = 0;
2072  *line = 0;
2073  while (!feof(f)) {
2074  // Create an inner scoping level, so that all the goto targets at the end of
2075  // the loop appear in an outer scoping level. This avoids warnings about
2076  // jumping past an initialization to a target in the same block.
2077  {
2078  buf[sizeof(buf) - 1] = 1;
2079  bool long_line = false;
2080  if (!fgets(buf, sizeof(buf), f)) {
2081  // Read errors presumably because of EOF
2082  // If there is valid data in threadInfo[num_avail], then fake
2083  // a blank line in ensure that the last address gets parsed.
2084  bool valid = false;
2085  for (i = 0; i <= maxIndex; i++) {
2086  if (threadInfo[num_avail][i] != UINT_MAX) {
2087  valid = true;
2088  }
2089  }
2090  if (!valid) {
2091  break;
2092  }
2093  buf[0] = 0;
2094  } else if (!buf[sizeof(buf) - 1]) {
2095  // The line is longer than the buffer. Set a flag and don't
2096  // emit an error if we were going to ignore the line, anyway.
2097  long_line = true;
2098 
2099 #define CHECK_LINE \
2100  if (long_line) { \
2101  CLEANUP_THREAD_INFO; \
2102  *msg_id = kmp_i18n_str_LongLineCpuinfo; \
2103  return -1; \
2104  }
2105  }
2106  (*line)++;
2107 
2108  char s1[] = "processor";
2109  if (strncmp(buf, s1, sizeof(s1) - 1) == 0) {
2110  CHECK_LINE;
2111  char *p = strchr(buf + sizeof(s1) - 1, ':');
2112  unsigned val;
2113  if ((p == NULL) || (KMP_SSCANF(p + 1, "%u\n", &val) != 1))
2114  goto no_val;
2115  if (threadInfo[num_avail][osIdIndex] != UINT_MAX)
2116 #if KMP_ARCH_AARCH64
2117  // Handle the old AArch64 /proc/cpuinfo layout differently,
2118  // it contains all of the 'processor' entries listed in a
2119  // single 'Processor' section, therefore the normal looking
2120  // for duplicates in that section will always fail.
2121  num_avail++;
2122 #else
2123  goto dup_field;
2124 #endif
2125  threadInfo[num_avail][osIdIndex] = val;
2126 #if KMP_OS_LINUX && !(KMP_ARCH_X86 || KMP_ARCH_X86_64)
2127  char path[256];
2128  KMP_SNPRINTF(
2129  path, sizeof(path),
2130  "/sys/devices/system/cpu/cpu%u/topology/physical_package_id",
2131  threadInfo[num_avail][osIdIndex]);
2132  __kmp_read_from_file(path, "%u", &threadInfo[num_avail][pkgIdIndex]);
2133 
2134  KMP_SNPRINTF(path, sizeof(path),
2135  "/sys/devices/system/cpu/cpu%u/topology/core_id",
2136  threadInfo[num_avail][osIdIndex]);
2137  __kmp_read_from_file(path, "%u", &threadInfo[num_avail][coreIdIndex]);
2138  continue;
2139 #else
2140  }
2141  char s2[] = "physical id";
2142  if (strncmp(buf, s2, sizeof(s2) - 1) == 0) {
2143  CHECK_LINE;
2144  char *p = strchr(buf + sizeof(s2) - 1, ':');
2145  unsigned val;
2146  if ((p == NULL) || (KMP_SSCANF(p + 1, "%u\n", &val) != 1))
2147  goto no_val;
2148  if (threadInfo[num_avail][pkgIdIndex] != UINT_MAX)
2149  goto dup_field;
2150  threadInfo[num_avail][pkgIdIndex] = val;
2151  continue;
2152  }
2153  char s3[] = "core id";
2154  if (strncmp(buf, s3, sizeof(s3) - 1) == 0) {
2155  CHECK_LINE;
2156  char *p = strchr(buf + sizeof(s3) - 1, ':');
2157  unsigned val;
2158  if ((p == NULL) || (KMP_SSCANF(p + 1, "%u\n", &val) != 1))
2159  goto no_val;
2160  if (threadInfo[num_avail][coreIdIndex] != UINT_MAX)
2161  goto dup_field;
2162  threadInfo[num_avail][coreIdIndex] = val;
2163  continue;
2164 #endif // KMP_OS_LINUX && USE_SYSFS_INFO
2165  }
2166  char s4[] = "thread id";
2167  if (strncmp(buf, s4, sizeof(s4) - 1) == 0) {
2168  CHECK_LINE;
2169  char *p = strchr(buf + sizeof(s4) - 1, ':');
2170  unsigned val;
2171  if ((p == NULL) || (KMP_SSCANF(p + 1, "%u\n", &val) != 1))
2172  goto no_val;
2173  if (threadInfo[num_avail][threadIdIndex] != UINT_MAX)
2174  goto dup_field;
2175  threadInfo[num_avail][threadIdIndex] = val;
2176  continue;
2177  }
2178  unsigned level;
2179  if (KMP_SSCANF(buf, "node_%u id", &level) == 1) {
2180  CHECK_LINE;
2181  char *p = strchr(buf + sizeof(s4) - 1, ':');
2182  unsigned val;
2183  if ((p == NULL) || (KMP_SSCANF(p + 1, "%u\n", &val) != 1))
2184  goto no_val;
2185  KMP_ASSERT(nodeIdIndex + level <= maxIndex);
2186  if (threadInfo[num_avail][nodeIdIndex + level] != UINT_MAX)
2187  goto dup_field;
2188  threadInfo[num_avail][nodeIdIndex + level] = val;
2189  continue;
2190  }
2191 
2192  // We didn't recognize the leading token on the line. There are lots of
2193  // leading tokens that we don't recognize - if the line isn't empty, go on
2194  // to the next line.
2195  if ((*buf != 0) && (*buf != '\n')) {
2196  // If the line is longer than the buffer, read characters
2197  // until we find a newline.
2198  if (long_line) {
2199  int ch;
2200  while (((ch = fgetc(f)) != EOF) && (ch != '\n'))
2201  ;
2202  }
2203  continue;
2204  }
2205 
2206  // A newline has signalled the end of the processor record.
2207  // Check that there aren't too many procs specified.
2208  if ((int)num_avail == __kmp_xproc) {
2209  CLEANUP_THREAD_INFO;
2210  *msg_id = kmp_i18n_str_TooManyEntries;
2211  return -1;
2212  }
2213 
2214  // Check for missing fields. The osId field must be there, and we
2215  // currently require that the physical id field is specified, also.
2216  if (threadInfo[num_avail][osIdIndex] == UINT_MAX) {
2217  CLEANUP_THREAD_INFO;
2218  *msg_id = kmp_i18n_str_MissingProcField;
2219  return -1;
2220  }
2221  if (threadInfo[0][pkgIdIndex] == UINT_MAX) {
2222  CLEANUP_THREAD_INFO;
2223  *msg_id = kmp_i18n_str_MissingPhysicalIDField;
2224  return -1;
2225  }
2226 
2227  // Skip this proc if it is not included in the machine model.
2228  if (!KMP_CPU_ISSET(threadInfo[num_avail][osIdIndex],
2229  __kmp_affin_fullMask)) {
2230  INIT_PROC_INFO(threadInfo[num_avail]);
2231  continue;
2232  }
2233 
2234  // We have a successful parse of this proc's info.
2235  // Increment the counter, and prepare for the next proc.
2236  num_avail++;
2237  KMP_ASSERT(num_avail <= num_records);
2238  INIT_PROC_INFO(threadInfo[num_avail]);
2239  }
2240  continue;
2241 
2242  no_val:
2243  CLEANUP_THREAD_INFO;
2244  *msg_id = kmp_i18n_str_MissingValCpuinfo;
2245  return -1;
2246 
2247  dup_field:
2248  CLEANUP_THREAD_INFO;
2249  *msg_id = kmp_i18n_str_DuplicateFieldCpuinfo;
2250  return -1;
2251  }
2252  *line = 0;
2253 
2254 #if KMP_MIC && REDUCE_TEAM_SIZE
2255  unsigned teamSize = 0;
2256 #endif // KMP_MIC && REDUCE_TEAM_SIZE
2257 
2258  // check for num_records == __kmp_xproc ???
2259 
2260  // If there's only one thread context to bind to, form an Address object with
2261  // depth 1 and return immediately (or, if affinity is off, set address2os to
2262  // NULL and return).
2263  //
2264  // If it is configured to omit the package level when there is only a single
2265  // package, the logic at the end of this routine won't work if there is only a
2266  // single thread - it would try to form an Address object with depth 0.
2267  KMP_ASSERT(num_avail > 0);
2268  KMP_ASSERT(num_avail <= num_records);
2269  if (num_avail == 1) {
2270  __kmp_ncores = 1;
2271  __kmp_nThreadsPerCore = nCoresPerPkg = nPackages = 1;
2272  if (__kmp_affinity_verbose) {
2273  if (!KMP_AFFINITY_CAPABLE()) {
2274  KMP_INFORM(AffNotCapableUseCpuinfo, "KMP_AFFINITY");
2275  KMP_INFORM(AvailableOSProc, "KMP_AFFINITY", __kmp_avail_proc);
2276  KMP_INFORM(Uniform, "KMP_AFFINITY");
2277  } else {
2278  KMP_INFORM(AffCapableUseCpuinfo, "KMP_AFFINITY");
2279  KMP_INFORM(AvailableOSProc, "KMP_AFFINITY", __kmp_avail_proc);
2280  KMP_INFORM(Uniform, "KMP_AFFINITY");
2281  }
2282  int index;
2283  kmp_str_buf_t buf;
2284  __kmp_str_buf_init(&buf);
2285  __kmp_str_buf_print(&buf, "1");
2286  for (index = maxIndex - 1; index > pkgIdIndex; index--) {
2287  __kmp_str_buf_print(&buf, " x 1");
2288  }
2289  KMP_INFORM(TopologyExtra, "KMP_AFFINITY", buf.str, 1, 1, 1);
2290  __kmp_str_buf_free(&buf);
2291  }
2292 
2293  if (__kmp_affinity_type == affinity_none) {
2294  CLEANUP_THREAD_INFO;
2295  return 0;
2296  }
2297 
2298  *address2os = (AddrUnsPair *)__kmp_allocate(sizeof(AddrUnsPair));
2299  Address addr(1);
2300  addr.labels[0] = threadInfo[0][pkgIdIndex];
2301  (*address2os)[0] = AddrUnsPair(addr, threadInfo[0][osIdIndex]);
2302 
2303  if (__kmp_affinity_gran_levels < 0) {
2304  __kmp_affinity_gran_levels = 0;
2305  }
2306 
2307  if (__kmp_affinity_verbose) {
2308  __kmp_affinity_print_topology(*address2os, 1, 1, 0, -1, -1);
2309  }
2310 
2311  CLEANUP_THREAD_INFO;
2312  return 1;
2313  }
2314 
2315  // Sort the threadInfo table by physical Id.
2316  qsort(threadInfo, num_avail, sizeof(*threadInfo),
2317  __kmp_affinity_cmp_ProcCpuInfo_phys_id);
2318 
2319  // The table is now sorted by pkgId / coreId / threadId, but we really don't
2320  // know the radix of any of the fields. pkgId's may be sparsely assigned among
2321  // the chips on a system. Although coreId's are usually assigned
2322  // [0 .. coresPerPkg-1] and threadId's are usually assigned
2323  // [0..threadsPerCore-1], we don't want to make any such assumptions.
2324  //
2325  // For that matter, we don't know what coresPerPkg and threadsPerCore (or the
2326  // total # packages) are at this point - we want to determine that now. We
2327  // only have an upper bound on the first two figures.
2328  unsigned *counts =
2329  (unsigned *)__kmp_allocate((maxIndex + 1) * sizeof(unsigned));
2330  unsigned *maxCt =
2331  (unsigned *)__kmp_allocate((maxIndex + 1) * sizeof(unsigned));
2332  unsigned *totals =
2333  (unsigned *)__kmp_allocate((maxIndex + 1) * sizeof(unsigned));
2334  unsigned *lastId =
2335  (unsigned *)__kmp_allocate((maxIndex + 1) * sizeof(unsigned));
2336 
2337  bool assign_thread_ids = false;
2338  unsigned threadIdCt;
2339  unsigned index;
2340 
2341 restart_radix_check:
2342  threadIdCt = 0;
2343 
2344  // Initialize the counter arrays with data from threadInfo[0].
2345  if (assign_thread_ids) {
2346  if (threadInfo[0][threadIdIndex] == UINT_MAX) {
2347  threadInfo[0][threadIdIndex] = threadIdCt++;
2348  } else if (threadIdCt <= threadInfo[0][threadIdIndex]) {
2349  threadIdCt = threadInfo[0][threadIdIndex] + 1;
2350  }
2351  }
2352  for (index = 0; index <= maxIndex; index++) {
2353  counts[index] = 1;
2354  maxCt[index] = 1;
2355  totals[index] = 1;
2356  lastId[index] = threadInfo[0][index];
2357  ;
2358  }
2359 
2360  // Run through the rest of the OS procs.
2361  for (i = 1; i < num_avail; i++) {
2362  // Find the most significant index whose id differs from the id for the
2363  // previous OS proc.
2364  for (index = maxIndex; index >= threadIdIndex; index--) {
2365  if (assign_thread_ids && (index == threadIdIndex)) {
2366  // Auto-assign the thread id field if it wasn't specified.
2367  if (threadInfo[i][threadIdIndex] == UINT_MAX) {
2368  threadInfo[i][threadIdIndex] = threadIdCt++;
2369  }
2370  // Apparently the thread id field was specified for some entries and not
2371  // others. Start the thread id counter off at the next higher thread id.
2372  else if (threadIdCt <= threadInfo[i][threadIdIndex]) {
2373  threadIdCt = threadInfo[i][threadIdIndex] + 1;
2374  }
2375  }
2376  if (threadInfo[i][index] != lastId[index]) {
2377  // Run through all indices which are less significant, and reset the
2378  // counts to 1. At all levels up to and including index, we need to
2379  // increment the totals and record the last id.
2380  unsigned index2;
2381  for (index2 = threadIdIndex; index2 < index; index2++) {
2382  totals[index2]++;
2383  if (counts[index2] > maxCt[index2]) {
2384  maxCt[index2] = counts[index2];
2385  }
2386  counts[index2] = 1;
2387  lastId[index2] = threadInfo[i][index2];
2388  }
2389  counts[index]++;
2390  totals[index]++;
2391  lastId[index] = threadInfo[i][index];
2392 
2393  if (assign_thread_ids && (index > threadIdIndex)) {
2394 
2395 #if KMP_MIC && REDUCE_TEAM_SIZE
2396  // The default team size is the total #threads in the machine
2397  // minus 1 thread for every core that has 3 or more threads.
2398  teamSize += (threadIdCt <= 2) ? (threadIdCt) : (threadIdCt - 1);
2399 #endif // KMP_MIC && REDUCE_TEAM_SIZE
2400 
2401  // Restart the thread counter, as we are on a new core.
2402  threadIdCt = 0;
2403 
2404  // Auto-assign the thread id field if it wasn't specified.
2405  if (threadInfo[i][threadIdIndex] == UINT_MAX) {
2406  threadInfo[i][threadIdIndex] = threadIdCt++;
2407  }
2408 
2409  // Apparently the thread id field was specified for some entries and
2410  // not others. Start the thread id counter off at the next higher
2411  // thread id.
2412  else if (threadIdCt <= threadInfo[i][threadIdIndex]) {
2413  threadIdCt = threadInfo[i][threadIdIndex] + 1;
2414  }
2415  }
2416  break;
2417  }
2418  }
2419  if (index < threadIdIndex) {
2420  // If thread ids were specified, it is an error if they are not unique.
2421  // Also, check that we waven't already restarted the loop (to be safe -
2422  // shouldn't need to).
2423  if ((threadInfo[i][threadIdIndex] != UINT_MAX) || assign_thread_ids) {
2424  __kmp_free(lastId);
2425  __kmp_free(totals);
2426  __kmp_free(maxCt);
2427  __kmp_free(counts);
2428  CLEANUP_THREAD_INFO;
2429  *msg_id = kmp_i18n_str_PhysicalIDsNotUnique;
2430  return -1;
2431  }
2432 
2433  // If the thread ids were not specified and we see entries entries that
2434  // are duplicates, start the loop over and assign the thread ids manually.
2435  assign_thread_ids = true;
2436  goto restart_radix_check;
2437  }
2438  }
2439 
2440 #if KMP_MIC && REDUCE_TEAM_SIZE
2441  // The default team size is the total #threads in the machine
2442  // minus 1 thread for every core that has 3 or more threads.
2443  teamSize += (threadIdCt <= 2) ? (threadIdCt) : (threadIdCt - 1);
2444 #endif // KMP_MIC && REDUCE_TEAM_SIZE
2445 
2446  for (index = threadIdIndex; index <= maxIndex; index++) {
2447  if (counts[index] > maxCt[index]) {
2448  maxCt[index] = counts[index];
2449  }
2450  }
2451 
2452  __kmp_nThreadsPerCore = maxCt[threadIdIndex];
2453  nCoresPerPkg = maxCt[coreIdIndex];
2454  nPackages = totals[pkgIdIndex];
2455 
2456  // Check to see if the machine topology is uniform
2457  unsigned prod = totals[maxIndex];
2458  for (index = threadIdIndex; index < maxIndex; index++) {
2459  prod *= maxCt[index];
2460  }
2461  bool uniform = (prod == totals[threadIdIndex]);
2462 
2463  // When affinity is off, this routine will still be called to set
2464  // __kmp_ncores, as well as __kmp_nThreadsPerCore, nCoresPerPkg, & nPackages.
2465  // Make sure all these vars are set correctly, and return now if affinity is
2466  // not enabled.
2467  __kmp_ncores = totals[coreIdIndex];
2468 
2469  if (__kmp_affinity_verbose) {
2470  if (!KMP_AFFINITY_CAPABLE()) {
2471  KMP_INFORM(AffNotCapableUseCpuinfo, "KMP_AFFINITY");
2472  KMP_INFORM(AvailableOSProc, "KMP_AFFINITY", __kmp_avail_proc);
2473  if (uniform) {
2474  KMP_INFORM(Uniform, "KMP_AFFINITY");
2475  } else {
2476  KMP_INFORM(NonUniform, "KMP_AFFINITY");
2477  }
2478  } else {
2479  KMP_INFORM(AffCapableUseCpuinfo, "KMP_AFFINITY");
2480  KMP_INFORM(AvailableOSProc, "KMP_AFFINITY", __kmp_avail_proc);
2481  if (uniform) {
2482  KMP_INFORM(Uniform, "KMP_AFFINITY");
2483  } else {
2484  KMP_INFORM(NonUniform, "KMP_AFFINITY");
2485  }
2486  }
2487  kmp_str_buf_t buf;
2488  __kmp_str_buf_init(&buf);
2489 
2490  __kmp_str_buf_print(&buf, "%d", totals[maxIndex]);
2491  for (index = maxIndex - 1; index >= pkgIdIndex; index--) {
2492  __kmp_str_buf_print(&buf, " x %d", maxCt[index]);
2493  }
2494  KMP_INFORM(TopologyExtra, "KMP_AFFINITY", buf.str, maxCt[coreIdIndex],
2495  maxCt[threadIdIndex], __kmp_ncores);
2496 
2497  __kmp_str_buf_free(&buf);
2498  }
2499 
2500 #if KMP_MIC && REDUCE_TEAM_SIZE
2501  // Set the default team size.
2502  if ((__kmp_dflt_team_nth == 0) && (teamSize > 0)) {
2503  __kmp_dflt_team_nth = teamSize;
2504  KA_TRACE(20, ("__kmp_affinity_create_cpuinfo_map: setting "
2505  "__kmp_dflt_team_nth = %d\n",
2506  __kmp_dflt_team_nth));
2507  }
2508 #endif // KMP_MIC && REDUCE_TEAM_SIZE
2509 
2510  KMP_DEBUG_ASSERT(__kmp_pu_os_idx == NULL);
2511  KMP_DEBUG_ASSERT(num_avail == (unsigned)__kmp_avail_proc);
2512  __kmp_pu_os_idx = (int *)__kmp_allocate(sizeof(int) * __kmp_avail_proc);
2513  for (i = 0; i < num_avail; ++i) { // fill the os indices
2514  __kmp_pu_os_idx[i] = threadInfo[i][osIdIndex];
2515  }
2516 
2517  if (__kmp_affinity_type == affinity_none) {
2518  __kmp_free(lastId);
2519  __kmp_free(totals);
2520  __kmp_free(maxCt);
2521  __kmp_free(counts);
2522  CLEANUP_THREAD_INFO;
2523  return 0;
2524  }
2525 
2526  // Count the number of levels which have more nodes at that level than at the
2527  // parent's level (with there being an implicit root node of the top level).
2528  // This is equivalent to saying that there is at least one node at this level
2529  // which has a sibling. These levels are in the map, and the package level is
2530  // always in the map.
2531  bool *inMap = (bool *)__kmp_allocate((maxIndex + 1) * sizeof(bool));
2532  for (index = threadIdIndex; index < maxIndex; index++) {
2533  KMP_ASSERT(totals[index] >= totals[index + 1]);
2534  inMap[index] = (totals[index] > totals[index + 1]);
2535  }
2536  inMap[maxIndex] = (totals[maxIndex] > 1);
2537  inMap[pkgIdIndex] = true;
2538 
2539  int depth = 0;
2540  for (index = threadIdIndex; index <= maxIndex; index++) {
2541  if (inMap[index]) {
2542  depth++;
2543  }
2544  }
2545  KMP_ASSERT(depth > 0);
2546 
2547  // Construct the data structure that is to be returned.
2548  *address2os = (AddrUnsPair *)__kmp_allocate(sizeof(AddrUnsPair) * num_avail);
2549  int pkgLevel = -1;
2550  int coreLevel = -1;
2551  int threadLevel = -1;
2552 
2553  for (i = 0; i < num_avail; ++i) {
2554  Address addr(depth);
2555  unsigned os = threadInfo[i][osIdIndex];
2556  int src_index;
2557  int dst_index = 0;
2558 
2559  for (src_index = maxIndex; src_index >= threadIdIndex; src_index--) {
2560  if (!inMap[src_index]) {
2561  continue;
2562  }
2563  addr.labels[dst_index] = threadInfo[i][src_index];
2564  if (src_index == pkgIdIndex) {
2565  pkgLevel = dst_index;
2566  } else if (src_index == coreIdIndex) {
2567  coreLevel = dst_index;
2568  } else if (src_index == threadIdIndex) {
2569  threadLevel = dst_index;
2570  }
2571  dst_index++;
2572  }
2573  (*address2os)[i] = AddrUnsPair(addr, os);
2574  }
2575 
2576  if (__kmp_affinity_gran_levels < 0) {
2577  // Set the granularity level based on what levels are modeled
2578  // in the machine topology map.
2579  unsigned src_index;
2580  __kmp_affinity_gran_levels = 0;
2581  for (src_index = threadIdIndex; src_index <= maxIndex; src_index++) {
2582  if (!inMap[src_index]) {
2583  continue;
2584  }
2585  switch (src_index) {
2586  case threadIdIndex:
2587  if (__kmp_affinity_gran > affinity_gran_thread) {
2588  __kmp_affinity_gran_levels++;
2589  }
2590 
2591  break;
2592  case coreIdIndex:
2593  if (__kmp_affinity_gran > affinity_gran_core) {
2594  __kmp_affinity_gran_levels++;
2595  }
2596  break;
2597 
2598  case pkgIdIndex:
2599  if (__kmp_affinity_gran > affinity_gran_package) {
2600  __kmp_affinity_gran_levels++;
2601  }
2602  break;
2603  }
2604  }
2605  }
2606 
2607  if (__kmp_affinity_verbose) {
2608  __kmp_affinity_print_topology(*address2os, num_avail, depth, pkgLevel,
2609  coreLevel, threadLevel);
2610  }
2611 
2612  __kmp_free(inMap);
2613  __kmp_free(lastId);
2614  __kmp_free(totals);
2615  __kmp_free(maxCt);
2616  __kmp_free(counts);
2617  CLEANUP_THREAD_INFO;
2618  return depth;
2619 }
2620 
2621 // Create and return a table of affinity masks, indexed by OS thread ID.
2622 // This routine handles OR'ing together all the affinity masks of threads
2623 // that are sufficiently close, if granularity > fine.
2624 static kmp_affin_mask_t *__kmp_create_masks(unsigned *maxIndex,
2625  unsigned *numUnique,
2626  AddrUnsPair *address2os,
2627  unsigned numAddrs) {
2628  // First form a table of affinity masks in order of OS thread id.
2629  unsigned depth;
2630  unsigned maxOsId;
2631  unsigned i;
2632 
2633  KMP_ASSERT(numAddrs > 0);
2634  depth = address2os[0].first.depth;
2635 
2636  maxOsId = 0;
2637  for (i = numAddrs - 1;; --i) {
2638  unsigned osId = address2os[i].second;
2639  if (osId > maxOsId) {
2640  maxOsId = osId;
2641  }
2642  if (i == 0)
2643  break;
2644  }
2645  kmp_affin_mask_t *osId2Mask;
2646  KMP_CPU_ALLOC_ARRAY(osId2Mask, (maxOsId + 1));
2647 
2648  // Sort the address2os table according to physical order. Doing so will put
2649  // all threads on the same core/package/node in consecutive locations.
2650  qsort(address2os, numAddrs, sizeof(*address2os),
2651  __kmp_affinity_cmp_Address_labels);
2652 
2653  KMP_ASSERT(__kmp_affinity_gran_levels >= 0);
2654  if (__kmp_affinity_verbose && (__kmp_affinity_gran_levels > 0)) {
2655  KMP_INFORM(ThreadsMigrate, "KMP_AFFINITY", __kmp_affinity_gran_levels);
2656  }
2657  if (__kmp_affinity_gran_levels >= (int)depth) {
2658  if (__kmp_affinity_verbose ||
2659  (__kmp_affinity_warnings && (__kmp_affinity_type != affinity_none))) {
2660  KMP_WARNING(AffThreadsMayMigrate);
2661  }
2662  }
2663 
2664  // Run through the table, forming the masks for all threads on each core.
2665  // Threads on the same core will have identical "Address" objects, not
2666  // considering the last level, which must be the thread id. All threads on a
2667  // core will appear consecutively.
2668  unsigned unique = 0;
2669  unsigned j = 0; // index of 1st thread on core
2670  unsigned leader = 0;
2671  Address *leaderAddr = &(address2os[0].first);
2672  kmp_affin_mask_t *sum;
2673  KMP_CPU_ALLOC_ON_STACK(sum);
2674  KMP_CPU_ZERO(sum);
2675  KMP_CPU_SET(address2os[0].second, sum);
2676  for (i = 1; i < numAddrs; i++) {
2677  // If this thread is sufficiently close to the leader (within the
2678  // granularity setting), then set the bit for this os thread in the
2679  // affinity mask for this group, and go on to the next thread.
2680  if (leaderAddr->isClose(address2os[i].first, __kmp_affinity_gran_levels)) {
2681  KMP_CPU_SET(address2os[i].second, sum);
2682  continue;
2683  }
2684 
2685  // For every thread in this group, copy the mask to the thread's entry in
2686  // the osId2Mask table. Mark the first address as a leader.
2687  for (; j < i; j++) {
2688  unsigned osId = address2os[j].second;
2689  KMP_DEBUG_ASSERT(osId <= maxOsId);
2690  kmp_affin_mask_t *mask = KMP_CPU_INDEX(osId2Mask, osId);
2691  KMP_CPU_COPY(mask, sum);
2692  address2os[j].first.leader = (j == leader);
2693  }
2694  unique++;
2695 
2696  // Start a new mask.
2697  leader = i;
2698  leaderAddr = &(address2os[i].first);
2699  KMP_CPU_ZERO(sum);
2700  KMP_CPU_SET(address2os[i].second, sum);
2701  }
2702 
2703  // For every thread in last group, copy the mask to the thread's
2704  // entry in the osId2Mask table.
2705  for (; j < i; j++) {
2706  unsigned osId = address2os[j].second;
2707  KMP_DEBUG_ASSERT(osId <= maxOsId);
2708  kmp_affin_mask_t *mask = KMP_CPU_INDEX(osId2Mask, osId);
2709  KMP_CPU_COPY(mask, sum);
2710  address2os[j].first.leader = (j == leader);
2711  }
2712  unique++;
2713  KMP_CPU_FREE_FROM_STACK(sum);
2714 
2715  *maxIndex = maxOsId;
2716  *numUnique = unique;
2717  return osId2Mask;
2718 }
2719 
2720 // Stuff for the affinity proclist parsers. It's easier to declare these vars
2721 // as file-static than to try and pass them through the calling sequence of
2722 // the recursive-descent OMP_PLACES parser.
2723 static kmp_affin_mask_t *newMasks;
2724 static int numNewMasks;
2725 static int nextNewMask;
2726 
2727 #define ADD_MASK(_mask) \
2728  { \
2729  if (nextNewMask >= numNewMasks) { \
2730  int i; \
2731  numNewMasks *= 2; \
2732  kmp_affin_mask_t *temp; \
2733  KMP_CPU_INTERNAL_ALLOC_ARRAY(temp, numNewMasks); \
2734  for (i = 0; i < numNewMasks / 2; i++) { \
2735  kmp_affin_mask_t *src = KMP_CPU_INDEX(newMasks, i); \
2736  kmp_affin_mask_t *dest = KMP_CPU_INDEX(temp, i); \
2737  KMP_CPU_COPY(dest, src); \
2738  } \
2739  KMP_CPU_INTERNAL_FREE_ARRAY(newMasks, numNewMasks / 2); \
2740  newMasks = temp; \
2741  } \
2742  KMP_CPU_COPY(KMP_CPU_INDEX(newMasks, nextNewMask), (_mask)); \
2743  nextNewMask++; \
2744  }
2745 
2746 #define ADD_MASK_OSID(_osId, _osId2Mask, _maxOsId) \
2747  { \
2748  if (((_osId) > _maxOsId) || \
2749  (!KMP_CPU_ISSET((_osId), KMP_CPU_INDEX((_osId2Mask), (_osId))))) { \
2750  if (__kmp_affinity_verbose || \
2751  (__kmp_affinity_warnings && \
2752  (__kmp_affinity_type != affinity_none))) { \
2753  KMP_WARNING(AffIgnoreInvalidProcID, _osId); \
2754  } \
2755  } else { \
2756  ADD_MASK(KMP_CPU_INDEX(_osId2Mask, (_osId))); \
2757  } \
2758  }
2759 
2760 // Re-parse the proclist (for the explicit affinity type), and form the list
2761 // of affinity newMasks indexed by gtid.
2762 static void __kmp_affinity_process_proclist(kmp_affin_mask_t **out_masks,
2763  unsigned int *out_numMasks,
2764  const char *proclist,
2765  kmp_affin_mask_t *osId2Mask,
2766  int maxOsId) {
2767  int i;
2768  const char *scan = proclist;
2769  const char *next = proclist;
2770 
2771  // We use malloc() for the temporary mask vector, so that we can use
2772  // realloc() to extend it.
2773  numNewMasks = 2;
2774  KMP_CPU_INTERNAL_ALLOC_ARRAY(newMasks, numNewMasks);
2775  nextNewMask = 0;
2776  kmp_affin_mask_t *sumMask;
2777  KMP_CPU_ALLOC(sumMask);
2778  int setSize = 0;
2779 
2780  for (;;) {
2781  int start, end, stride;
2782 
2783  SKIP_WS(scan);
2784  next = scan;
2785  if (*next == '\0') {
2786  break;
2787  }
2788 
2789  if (*next == '{') {
2790  int num;
2791  setSize = 0;
2792  next++; // skip '{'
2793  SKIP_WS(next);
2794  scan = next;
2795 
2796  // Read the first integer in the set.
2797  KMP_ASSERT2((*next >= '0') && (*next <= '9'), "bad proclist");
2798  SKIP_DIGITS(next);
2799  num = __kmp_str_to_int(scan, *next);
2800  KMP_ASSERT2(num >= 0, "bad explicit proc list");
2801 
2802  // Copy the mask for that osId to the sum (union) mask.
2803  if ((num > maxOsId) ||
2804  (!KMP_CPU_ISSET(num, KMP_CPU_INDEX(osId2Mask, num)))) {
2805  if (__kmp_affinity_verbose ||
2806  (__kmp_affinity_warnings &&
2807  (__kmp_affinity_type != affinity_none))) {
2808  KMP_WARNING(AffIgnoreInvalidProcID, num);
2809  }
2810  KMP_CPU_ZERO(sumMask);
2811  } else {
2812  KMP_CPU_COPY(sumMask, KMP_CPU_INDEX(osId2Mask, num));
2813  setSize = 1;
2814  }
2815 
2816  for (;;) {
2817  // Check for end of set.
2818  SKIP_WS(next);
2819  if (*next == '}') {
2820  next++; // skip '}'
2821  break;
2822  }
2823 
2824  // Skip optional comma.
2825  if (*next == ',') {
2826  next++;
2827  }
2828  SKIP_WS(next);
2829 
2830  // Read the next integer in the set.
2831  scan = next;
2832  KMP_ASSERT2((*next >= '0') && (*next <= '9'), "bad explicit proc list");
2833 
2834  SKIP_DIGITS(next);
2835  num = __kmp_str_to_int(scan, *next);
2836  KMP_ASSERT2(num >= 0, "bad explicit proc list");
2837 
2838  // Add the mask for that osId to the sum mask.
2839  if ((num > maxOsId) ||
2840  (!KMP_CPU_ISSET(num, KMP_CPU_INDEX(osId2Mask, num)))) {
2841  if (__kmp_affinity_verbose ||
2842  (__kmp_affinity_warnings &&
2843  (__kmp_affinity_type != affinity_none))) {
2844  KMP_WARNING(AffIgnoreInvalidProcID, num);
2845  }
2846  } else {
2847  KMP_CPU_UNION(sumMask, KMP_CPU_INDEX(osId2Mask, num));
2848  setSize++;
2849  }
2850  }
2851  if (setSize > 0) {
2852  ADD_MASK(sumMask);
2853  }
2854 
2855  SKIP_WS(next);
2856  if (*next == ',') {
2857  next++;
2858  }
2859  scan = next;
2860  continue;
2861  }
2862 
2863  // Read the first integer.
2864  KMP_ASSERT2((*next >= '0') && (*next <= '9'), "bad explicit proc list");
2865  SKIP_DIGITS(next);
2866  start = __kmp_str_to_int(scan, *next);
2867  KMP_ASSERT2(start >= 0, "bad explicit proc list");
2868  SKIP_WS(next);
2869 
2870  // If this isn't a range, then add a mask to the list and go on.
2871  if (*next != '-') {
2872  ADD_MASK_OSID(start, osId2Mask, maxOsId);
2873 
2874  // Skip optional comma.
2875  if (*next == ',') {
2876  next++;
2877  }
2878  scan = next;
2879  continue;
2880  }
2881 
2882  // This is a range. Skip over the '-' and read in the 2nd int.
2883  next++; // skip '-'
2884  SKIP_WS(next);
2885  scan = next;
2886  KMP_ASSERT2((*next >= '0') && (*next <= '9'), "bad explicit proc list");
2887  SKIP_DIGITS(next);
2888  end = __kmp_str_to_int(scan, *next);
2889  KMP_ASSERT2(end >= 0, "bad explicit proc list");
2890 
2891  // Check for a stride parameter
2892  stride = 1;
2893  SKIP_WS(next);
2894  if (*next == ':') {
2895  // A stride is specified. Skip over the ':" and read the 3rd int.
2896  int sign = +1;
2897  next++; // skip ':'
2898  SKIP_WS(next);
2899  scan = next;
2900  if (*next == '-') {
2901  sign = -1;
2902  next++;
2903  SKIP_WS(next);
2904  scan = next;
2905  }
2906  KMP_ASSERT2((*next >= '0') && (*next <= '9'), "bad explicit proc list");
2907  SKIP_DIGITS(next);
2908  stride = __kmp_str_to_int(scan, *next);
2909  KMP_ASSERT2(stride >= 0, "bad explicit proc list");
2910  stride *= sign;
2911  }
2912 
2913  // Do some range checks.
2914  KMP_ASSERT2(stride != 0, "bad explicit proc list");
2915  if (stride > 0) {
2916  KMP_ASSERT2(start <= end, "bad explicit proc list");
2917  } else {
2918  KMP_ASSERT2(start >= end, "bad explicit proc list");
2919  }
2920  KMP_ASSERT2((end - start) / stride <= 65536, "bad explicit proc list");
2921 
2922  // Add the mask for each OS proc # to the list.
2923  if (stride > 0) {
2924  do {
2925  ADD_MASK_OSID(start, osId2Mask, maxOsId);
2926  start += stride;
2927  } while (start <= end);
2928  } else {
2929  do {
2930  ADD_MASK_OSID(start, osId2Mask, maxOsId);
2931  start += stride;
2932  } while (start >= end);
2933  }
2934 
2935  // Skip optional comma.
2936  SKIP_WS(next);
2937  if (*next == ',') {
2938  next++;
2939  }
2940  scan = next;
2941  }
2942 
2943  *out_numMasks = nextNewMask;
2944  if (nextNewMask == 0) {
2945  *out_masks = NULL;
2946  KMP_CPU_INTERNAL_FREE_ARRAY(newMasks, numNewMasks);
2947  return;
2948  }
2949  KMP_CPU_ALLOC_ARRAY((*out_masks), nextNewMask);
2950  for (i = 0; i < nextNewMask; i++) {
2951  kmp_affin_mask_t *src = KMP_CPU_INDEX(newMasks, i);
2952  kmp_affin_mask_t *dest = KMP_CPU_INDEX((*out_masks), i);
2953  KMP_CPU_COPY(dest, src);
2954  }
2955  KMP_CPU_INTERNAL_FREE_ARRAY(newMasks, numNewMasks);
2956  KMP_CPU_FREE(sumMask);
2957 }
2958 
2959 /*-----------------------------------------------------------------------------
2960 Re-parse the OMP_PLACES proc id list, forming the newMasks for the different
2961 places. Again, Here is the grammar:
2962 
2963 place_list := place
2964 place_list := place , place_list
2965 place := num
2966 place := place : num
2967 place := place : num : signed
2968 place := { subplacelist }
2969 place := ! place // (lowest priority)
2970 subplace_list := subplace
2971 subplace_list := subplace , subplace_list
2972 subplace := num
2973 subplace := num : num
2974 subplace := num : num : signed
2975 signed := num
2976 signed := + signed
2977 signed := - signed
2978 -----------------------------------------------------------------------------*/
2979 static void __kmp_process_subplace_list(const char **scan,
2980  kmp_affin_mask_t *osId2Mask,
2981  int maxOsId, kmp_affin_mask_t *tempMask,
2982  int *setSize) {
2983  const char *next;
2984 
2985  for (;;) {
2986  int start, count, stride, i;
2987 
2988  // Read in the starting proc id
2989  SKIP_WS(*scan);
2990  KMP_ASSERT2((**scan >= '0') && (**scan <= '9'), "bad explicit places list");
2991  next = *scan;
2992  SKIP_DIGITS(next);
2993  start = __kmp_str_to_int(*scan, *next);
2994  KMP_ASSERT(start >= 0);
2995  *scan = next;
2996 
2997  // valid follow sets are ',' ':' and '}'
2998  SKIP_WS(*scan);
2999  if (**scan == '}' || **scan == ',') {
3000  if ((start > maxOsId) ||
3001  (!KMP_CPU_ISSET(start, KMP_CPU_INDEX(osId2Mask, start)))) {
3002  if (__kmp_affinity_verbose ||
3003  (__kmp_affinity_warnings &&
3004  (__kmp_affinity_type != affinity_none))) {
3005  KMP_WARNING(AffIgnoreInvalidProcID, start);
3006  }
3007  } else {
3008  KMP_CPU_UNION(tempMask, KMP_CPU_INDEX(osId2Mask, start));
3009  (*setSize)++;
3010  }
3011  if (**scan == '}') {
3012  break;
3013  }
3014  (*scan)++; // skip ','
3015  continue;
3016  }
3017  KMP_ASSERT2(**scan == ':', "bad explicit places list");
3018  (*scan)++; // skip ':'
3019 
3020  // Read count parameter
3021  SKIP_WS(*scan);
3022  KMP_ASSERT2((**scan >= '0') && (**scan <= '9'), "bad explicit places list");
3023  next = *scan;
3024  SKIP_DIGITS(next);
3025  count = __kmp_str_to_int(*scan, *next);
3026  KMP_ASSERT(count >= 0);
3027  *scan = next;
3028 
3029  // valid follow sets are ',' ':' and '}'
3030  SKIP_WS(*scan);
3031  if (**scan == '}' || **scan == ',') {
3032  for (i = 0; i < count; i++) {
3033  if ((start > maxOsId) ||
3034  (!KMP_CPU_ISSET(start, KMP_CPU_INDEX(osId2Mask, start)))) {
3035  if (__kmp_affinity_verbose ||
3036  (__kmp_affinity_warnings &&
3037  (__kmp_affinity_type != affinity_none))) {
3038  KMP_WARNING(AffIgnoreInvalidProcID, start);
3039  }
3040  break; // don't proliferate warnings for large count
3041  } else {
3042  KMP_CPU_UNION(tempMask, KMP_CPU_INDEX(osId2Mask, start));
3043  start++;
3044  (*setSize)++;
3045  }
3046  }
3047  if (**scan == '}') {
3048  break;
3049  }
3050  (*scan)++; // skip ','
3051  continue;
3052  }
3053  KMP_ASSERT2(**scan == ':', "bad explicit places list");
3054  (*scan)++; // skip ':'
3055 
3056  // Read stride parameter
3057  int sign = +1;
3058  for (;;) {
3059  SKIP_WS(*scan);
3060  if (**scan == '+') {
3061  (*scan)++; // skip '+'
3062  continue;
3063  }
3064  if (**scan == '-') {
3065  sign *= -1;
3066  (*scan)++; // skip '-'
3067  continue;
3068  }
3069  break;
3070  }
3071  SKIP_WS(*scan);
3072  KMP_ASSERT2((**scan >= '0') && (**scan <= '9'), "bad explicit places list");
3073  next = *scan;
3074  SKIP_DIGITS(next);
3075  stride = __kmp_str_to_int(*scan, *next);
3076  KMP_ASSERT(stride >= 0);
3077  *scan = next;
3078  stride *= sign;
3079 
3080  // valid follow sets are ',' and '}'
3081  SKIP_WS(*scan);
3082  if (**scan == '}' || **scan == ',') {
3083  for (i = 0; i < count; i++) {
3084  if ((start > maxOsId) ||
3085  (!KMP_CPU_ISSET(start, KMP_CPU_INDEX(osId2Mask, start)))) {
3086  if (__kmp_affinity_verbose ||
3087  (__kmp_affinity_warnings &&
3088  (__kmp_affinity_type != affinity_none))) {
3089  KMP_WARNING(AffIgnoreInvalidProcID, start);
3090  }
3091  break; // don't proliferate warnings for large count
3092  } else {
3093  KMP_CPU_UNION(tempMask, KMP_CPU_INDEX(osId2Mask, start));
3094  start += stride;
3095  (*setSize)++;
3096  }
3097  }
3098  if (**scan == '}') {
3099  break;
3100  }
3101  (*scan)++; // skip ','
3102  continue;
3103  }
3104 
3105  KMP_ASSERT2(0, "bad explicit places list");
3106  }
3107 }
3108 
3109 static void __kmp_process_place(const char **scan, kmp_affin_mask_t *osId2Mask,
3110  int maxOsId, kmp_affin_mask_t *tempMask,
3111  int *setSize) {
3112  const char *next;
3113 
3114  // valid follow sets are '{' '!' and num
3115  SKIP_WS(*scan);
3116  if (**scan == '{') {
3117  (*scan)++; // skip '{'
3118  __kmp_process_subplace_list(scan, osId2Mask, maxOsId, tempMask, setSize);
3119  KMP_ASSERT2(**scan == '}', "bad explicit places list");
3120  (*scan)++; // skip '}'
3121  } else if (**scan == '!') {
3122  (*scan)++; // skip '!'
3123  __kmp_process_place(scan, osId2Mask, maxOsId, tempMask, setSize);
3124  KMP_CPU_COMPLEMENT(maxOsId, tempMask);
3125  } else if ((**scan >= '0') && (**scan <= '9')) {
3126  next = *scan;
3127  SKIP_DIGITS(next);
3128  int num = __kmp_str_to_int(*scan, *next);
3129  KMP_ASSERT(num >= 0);
3130  if ((num > maxOsId) ||
3131  (!KMP_CPU_ISSET(num, KMP_CPU_INDEX(osId2Mask, num)))) {
3132  if (__kmp_affinity_verbose ||
3133  (__kmp_affinity_warnings && (__kmp_affinity_type != affinity_none))) {
3134  KMP_WARNING(AffIgnoreInvalidProcID, num);
3135  }
3136  } else {
3137  KMP_CPU_UNION(tempMask, KMP_CPU_INDEX(osId2Mask, num));
3138  (*setSize)++;
3139  }
3140  *scan = next; // skip num
3141  } else {
3142  KMP_ASSERT2(0, "bad explicit places list");
3143  }
3144 }
3145 
3146 // static void
3147 void __kmp_affinity_process_placelist(kmp_affin_mask_t **out_masks,
3148  unsigned int *out_numMasks,
3149  const char *placelist,
3150  kmp_affin_mask_t *osId2Mask,
3151  int maxOsId) {
3152  int i, j, count, stride, sign;
3153  const char *scan = placelist;
3154  const char *next = placelist;
3155 
3156  numNewMasks = 2;
3157  KMP_CPU_INTERNAL_ALLOC_ARRAY(newMasks, numNewMasks);
3158  nextNewMask = 0;
3159 
3160  // tempMask is modified based on the previous or initial
3161  // place to form the current place
3162  // previousMask contains the previous place
3163  kmp_affin_mask_t *tempMask;
3164  kmp_affin_mask_t *previousMask;
3165  KMP_CPU_ALLOC(tempMask);
3166  KMP_CPU_ZERO(tempMask);
3167  KMP_CPU_ALLOC(previousMask);
3168  KMP_CPU_ZERO(previousMask);
3169  int setSize = 0;
3170 
3171  for (;;) {
3172  __kmp_process_place(&scan, osId2Mask, maxOsId, tempMask, &setSize);
3173 
3174  // valid follow sets are ',' ':' and EOL
3175  SKIP_WS(scan);
3176  if (*scan == '\0' || *scan == ',') {
3177  if (setSize > 0) {
3178  ADD_MASK(tempMask);
3179  }
3180  KMP_CPU_ZERO(tempMask);
3181  setSize = 0;
3182  if (*scan == '\0') {
3183  break;
3184  }
3185  scan++; // skip ','
3186  continue;
3187  }
3188 
3189  KMP_ASSERT2(*scan == ':', "bad explicit places list");
3190  scan++; // skip ':'
3191 
3192  // Read count parameter
3193  SKIP_WS(scan);
3194  KMP_ASSERT2((*scan >= '0') && (*scan <= '9'), "bad explicit places list");
3195  next = scan;
3196  SKIP_DIGITS(next);
3197  count = __kmp_str_to_int(scan, *next);
3198  KMP_ASSERT(count >= 0);
3199  scan = next;
3200 
3201  // valid follow sets are ',' ':' and EOL
3202  SKIP_WS(scan);
3203  if (*scan == '\0' || *scan == ',') {
3204  stride = +1;
3205  } else {
3206  KMP_ASSERT2(*scan == ':', "bad explicit places list");
3207  scan++; // skip ':'
3208 
3209  // Read stride parameter
3210  sign = +1;
3211  for (;;) {
3212  SKIP_WS(scan);
3213  if (*scan == '+') {
3214  scan++; // skip '+'
3215  continue;
3216  }
3217  if (*scan == '-') {
3218  sign *= -1;
3219  scan++; // skip '-'
3220  continue;
3221  }
3222  break;
3223  }
3224  SKIP_WS(scan);
3225  KMP_ASSERT2((*scan >= '0') && (*scan <= '9'), "bad explicit places list");
3226  next = scan;
3227  SKIP_DIGITS(next);
3228  stride = __kmp_str_to_int(scan, *next);
3229  KMP_DEBUG_ASSERT(stride >= 0);
3230  scan = next;
3231  stride *= sign;
3232  }
3233 
3234  // Add places determined by initial_place : count : stride
3235  for (i = 0; i < count; i++) {
3236  if (setSize == 0) {
3237  break;
3238  }
3239  // Add the current place, then build the next place (tempMask) from that
3240  KMP_CPU_COPY(previousMask, tempMask);
3241  ADD_MASK(previousMask);
3242  KMP_CPU_ZERO(tempMask);
3243  setSize = 0;
3244  KMP_CPU_SET_ITERATE(j, previousMask) {
3245  if (!KMP_CPU_ISSET(j, previousMask)) {
3246  continue;
3247  }
3248  if ((j + stride > maxOsId) || (j + stride < 0) ||
3249  (!KMP_CPU_ISSET(j, __kmp_affin_fullMask)) ||
3250  (!KMP_CPU_ISSET(j + stride,
3251  KMP_CPU_INDEX(osId2Mask, j + stride)))) {
3252  if ((__kmp_affinity_verbose ||
3253  (__kmp_affinity_warnings &&
3254  (__kmp_affinity_type != affinity_none))) &&
3255  i < count - 1) {
3256  KMP_WARNING(AffIgnoreInvalidProcID, j + stride);
3257  }
3258  continue;
3259  }
3260  KMP_CPU_SET(j + stride, tempMask);
3261  setSize++;
3262  }
3263  }
3264  KMP_CPU_ZERO(tempMask);
3265  setSize = 0;
3266 
3267  // valid follow sets are ',' and EOL
3268  SKIP_WS(scan);
3269  if (*scan == '\0') {
3270  break;
3271  }
3272  if (*scan == ',') {
3273  scan++; // skip ','
3274  continue;
3275  }
3276 
3277  KMP_ASSERT2(0, "bad explicit places list");
3278  }
3279 
3280  *out_numMasks = nextNewMask;
3281  if (nextNewMask == 0) {
3282  *out_masks = NULL;
3283  KMP_CPU_INTERNAL_FREE_ARRAY(newMasks, numNewMasks);
3284  return;
3285  }
3286  KMP_CPU_ALLOC_ARRAY((*out_masks), nextNewMask);
3287  KMP_CPU_FREE(tempMask);
3288  KMP_CPU_FREE(previousMask);
3289  for (i = 0; i < nextNewMask; i++) {
3290  kmp_affin_mask_t *src = KMP_CPU_INDEX(newMasks, i);
3291  kmp_affin_mask_t *dest = KMP_CPU_INDEX((*out_masks), i);
3292  KMP_CPU_COPY(dest, src);
3293  }
3294  KMP_CPU_INTERNAL_FREE_ARRAY(newMasks, numNewMasks);
3295 }
3296 
3297 #undef ADD_MASK
3298 #undef ADD_MASK_OSID
3299 
3300 #if KMP_USE_HWLOC
3301 static int __kmp_hwloc_skip_PUs_obj(hwloc_topology_t t, hwloc_obj_t o) {
3302  // skip PUs descendants of the object o
3303  int skipped = 0;
3304  hwloc_obj_t hT = NULL;
3305  int N = __kmp_hwloc_count_children_by_type(t, o, HWLOC_OBJ_PU, &hT);
3306  for (int i = 0; i < N; ++i) {
3307  KMP_DEBUG_ASSERT(hT);
3308  unsigned idx = hT->os_index;
3309  if (KMP_CPU_ISSET(idx, __kmp_affin_fullMask)) {
3310  KMP_CPU_CLR(idx, __kmp_affin_fullMask);
3311  KC_TRACE(200, ("KMP_HW_SUBSET: skipped proc %d\n", idx));
3312  ++skipped;
3313  }
3314  hT = hwloc_get_next_obj_by_type(t, HWLOC_OBJ_PU, hT);
3315  }
3316  return skipped; // count number of skipped units
3317 }
3318 
3319 static int __kmp_hwloc_obj_has_PUs(hwloc_topology_t t, hwloc_obj_t o) {
3320  // check if obj has PUs present in fullMask
3321  hwloc_obj_t hT = NULL;
3322  int N = __kmp_hwloc_count_children_by_type(t, o, HWLOC_OBJ_PU, &hT);
3323  for (int i = 0; i < N; ++i) {
3324  KMP_DEBUG_ASSERT(hT);
3325  unsigned idx = hT->os_index;
3326  if (KMP_CPU_ISSET(idx, __kmp_affin_fullMask))
3327  return 1; // found PU
3328  hT = hwloc_get_next_obj_by_type(t, HWLOC_OBJ_PU, hT);
3329  }
3330  return 0; // no PUs found
3331 }
3332 #endif // KMP_USE_HWLOC
3333 
3334 static void __kmp_apply_thread_places(AddrUnsPair **pAddr, int depth) {
3335  AddrUnsPair *newAddr;
3336  if (__kmp_hws_requested == 0)
3337  goto _exit; // no topology limiting actions requested, exit
3338 #if KMP_USE_HWLOC
3339  if (__kmp_affinity_dispatch->get_api_type() == KMPAffinity::HWLOC) {
3340  // Number of subobjects calculated dynamically, this works fine for
3341  // any non-uniform topology.
3342  // L2 cache objects are determined by depth, other objects - by type.
3343  hwloc_topology_t tp = __kmp_hwloc_topology;
3344  int nS = 0, nN = 0, nL = 0, nC = 0,
3345  nT = 0; // logical index including skipped
3346  int nCr = 0, nTr = 0; // number of requested units
3347  int nPkg = 0, nCo = 0, n_new = 0, n_old = 0, nCpP = 0, nTpC = 0; // counters
3348  hwloc_obj_t hT, hC, hL, hN, hS; // hwloc objects (pointers to)
3349  int L2depth, idx;
3350 
3351  // check support of extensions ----------------------------------
3352  int numa_support = 0, tile_support = 0;
3353  if (__kmp_pu_os_idx)
3354  hT = hwloc_get_pu_obj_by_os_index(tp,
3355  __kmp_pu_os_idx[__kmp_avail_proc - 1]);
3356  else
3357  hT = hwloc_get_obj_by_type(tp, HWLOC_OBJ_PU, __kmp_avail_proc - 1);
3358  if (hT == NULL) { // something's gone wrong
3359  KMP_WARNING(AffHWSubsetUnsupported);
3360  goto _exit;
3361  }
3362  // check NUMA node
3363  hN = hwloc_get_ancestor_obj_by_type(tp, HWLOC_OBJ_NUMANODE, hT);
3364  hS = hwloc_get_ancestor_obj_by_type(tp, HWLOC_OBJ_PACKAGE, hT);
3365  if (hN != NULL && hN->depth > hS->depth) {
3366  numa_support = 1; // 1 in case socket includes node(s)
3367  } else if (__kmp_hws_node.num > 0) {
3368  // don't support sockets inside NUMA node (no such HW found for testing)
3369  KMP_WARNING(AffHWSubsetUnsupported);
3370  goto _exit;
3371  }
3372  // check L2 cahce, get object by depth because of multiple caches
3373  L2depth = hwloc_get_cache_type_depth(tp, 2, HWLOC_OBJ_CACHE_UNIFIED);
3374  hL = hwloc_get_ancestor_obj_by_depth(tp, L2depth, hT);
3375  if (hL != NULL &&
3376  __kmp_hwloc_count_children_by_type(tp, hL, HWLOC_OBJ_CORE, &hC) > 1) {
3377  tile_support = 1; // no sense to count L2 if it includes single core
3378  } else if (__kmp_hws_tile.num > 0) {
3379  if (__kmp_hws_core.num == 0) {
3380  __kmp_hws_core = __kmp_hws_tile; // replace L2 with core
3381  __kmp_hws_tile.num = 0;
3382  } else {
3383  // L2 and core are both requested, but represent same object
3384  KMP_WARNING(AffHWSubsetInvalid);
3385  goto _exit;
3386  }
3387  }
3388  // end of check of extensions -----------------------------------
3389 
3390  // fill in unset items, validate settings -----------------------
3391  if (__kmp_hws_socket.num == 0)
3392  __kmp_hws_socket.num = nPackages; // use all available sockets
3393  if (__kmp_hws_socket.offset >= nPackages) {
3394  KMP_WARNING(AffHWSubsetManySockets);
3395  goto _exit;
3396  }
3397  if (numa_support) {
3398  hN = NULL;
3399  int NN = __kmp_hwloc_count_children_by_type(tp, hS, HWLOC_OBJ_NUMANODE,
3400  &hN); // num nodes in socket
3401  if (__kmp_hws_node.num == 0)
3402  __kmp_hws_node.num = NN; // use all available nodes
3403  if (__kmp_hws_node.offset >= NN) {
3404  KMP_WARNING(AffHWSubsetManyNodes);
3405  goto _exit;
3406  }
3407  if (tile_support) {
3408  // get num tiles in node
3409  int NL = __kmp_hwloc_count_children_by_depth(tp, hN, L2depth, &hL);
3410  if (__kmp_hws_tile.num == 0) {
3411  __kmp_hws_tile.num = NL + 1;
3412  } // use all available tiles, some node may have more tiles, thus +1
3413  if (__kmp_hws_tile.offset >= NL) {
3414  KMP_WARNING(AffHWSubsetManyTiles);
3415  goto _exit;
3416  }
3417  int NC = __kmp_hwloc_count_children_by_type(tp, hL, HWLOC_OBJ_CORE,
3418  &hC); // num cores in tile
3419  if (__kmp_hws_core.num == 0)
3420  __kmp_hws_core.num = NC; // use all available cores
3421  if (__kmp_hws_core.offset >= NC) {
3422  KMP_WARNING(AffHWSubsetManyCores);
3423  goto _exit;
3424  }
3425  } else { // tile_support
3426  int NC = __kmp_hwloc_count_children_by_type(tp, hN, HWLOC_OBJ_CORE,
3427  &hC); // num cores in node
3428  if (__kmp_hws_core.num == 0)
3429  __kmp_hws_core.num = NC; // use all available cores
3430  if (__kmp_hws_core.offset >= NC) {
3431  KMP_WARNING(AffHWSubsetManyCores);
3432  goto _exit;
3433  }
3434  } // tile_support
3435  } else { // numa_support
3436  if (tile_support) {
3437  // get num tiles in socket
3438  int NL = __kmp_hwloc_count_children_by_depth(tp, hS, L2depth, &hL);
3439  if (__kmp_hws_tile.num == 0)
3440  __kmp_hws_tile.num = NL; // use all available tiles
3441  if (__kmp_hws_tile.offset >= NL) {
3442  KMP_WARNING(AffHWSubsetManyTiles);
3443  goto _exit;
3444  }
3445  int NC = __kmp_hwloc_count_children_by_type(tp, hL, HWLOC_OBJ_CORE,
3446  &hC); // num cores in tile
3447  if (__kmp_hws_core.num == 0)
3448  __kmp_hws_core.num = NC; // use all available cores
3449  if (__kmp_hws_core.offset >= NC) {
3450  KMP_WARNING(AffHWSubsetManyCores);
3451  goto _exit;
3452  }
3453  } else { // tile_support
3454  int NC = __kmp_hwloc_count_children_by_type(tp, hS, HWLOC_OBJ_CORE,
3455  &hC); // num cores in socket
3456  if (__kmp_hws_core.num == 0)
3457  __kmp_hws_core.num = NC; // use all available cores
3458  if (__kmp_hws_core.offset >= NC) {
3459  KMP_WARNING(AffHWSubsetManyCores);
3460  goto _exit;
3461  }
3462  } // tile_support
3463  }
3464  if (__kmp_hws_proc.num == 0)
3465  __kmp_hws_proc.num = __kmp_nThreadsPerCore; // use all available procs
3466  if (__kmp_hws_proc.offset >= __kmp_nThreadsPerCore) {
3467  KMP_WARNING(AffHWSubsetManyProcs);
3468  goto _exit;
3469  }
3470  // end of validation --------------------------------------------
3471 
3472  if (pAddr) // pAddr is NULL in case of affinity_none
3473  newAddr = (AddrUnsPair *)__kmp_allocate(sizeof(AddrUnsPair) *
3474  __kmp_avail_proc); // max size
3475  // main loop to form HW subset ----------------------------------
3476  hS = NULL;
3477  int NP = hwloc_get_nbobjs_by_type(tp, HWLOC_OBJ_PACKAGE);
3478  for (int s = 0; s < NP; ++s) {
3479  // Check Socket -----------------------------------------------
3480  hS = hwloc_get_next_obj_by_type(tp, HWLOC_OBJ_PACKAGE, hS);
3481  if (!__kmp_hwloc_obj_has_PUs(tp, hS))
3482  continue; // skip socket if all PUs are out of fullMask
3483  ++nS; // only count objects those have PUs in affinity mask
3484  if (nS <= __kmp_hws_socket.offset ||
3485  nS > __kmp_hws_socket.num + __kmp_hws_socket.offset) {
3486  n_old += __kmp_hwloc_skip_PUs_obj(tp, hS); // skip socket
3487  continue; // move to next socket
3488  }
3489  nCr = 0; // count number of cores per socket
3490  // socket requested, go down the topology tree
3491  // check 4 cases: (+NUMA+Tile), (+NUMA-Tile), (-NUMA+Tile), (-NUMA-Tile)
3492  if (numa_support) {
3493  nN = 0;
3494  hN = NULL;
3495  // num nodes in current socket
3496  int NN =
3497  __kmp_hwloc_count_children_by_type(tp, hS, HWLOC_OBJ_NUMANODE, &hN);
3498  for (int n = 0; n < NN; ++n) {
3499  // Check NUMA Node ----------------------------------------
3500  if (!__kmp_hwloc_obj_has_PUs(tp, hN)) {
3501  hN = hwloc_get_next_obj_by_type(tp, HWLOC_OBJ_NUMANODE, hN);
3502  continue; // skip node if all PUs are out of fullMask
3503  }
3504  ++nN;
3505  if (nN <= __kmp_hws_node.offset ||
3506  nN > __kmp_hws_node.num + __kmp_hws_node.offset) {
3507  // skip node as not requested
3508  n_old += __kmp_hwloc_skip_PUs_obj(tp, hN); // skip node
3509  hN = hwloc_get_next_obj_by_type(tp, HWLOC_OBJ_NUMANODE, hN);
3510  continue; // move to next node
3511  }
3512  // node requested, go down the topology tree
3513  if (tile_support) {
3514  nL = 0;
3515  hL = NULL;
3516  int NL = __kmp_hwloc_count_children_by_depth(tp, hN, L2depth, &hL);
3517  for (int l = 0; l < NL; ++l) {
3518  // Check L2 (tile) ------------------------------------
3519  if (!__kmp_hwloc_obj_has_PUs(tp, hL)) {
3520  hL = hwloc_get_next_obj_by_depth(tp, L2depth, hL);
3521  continue; // skip tile if all PUs are out of fullMask
3522  }
3523  ++nL;
3524  if (nL <= __kmp_hws_tile.offset ||
3525  nL > __kmp_hws_tile.num + __kmp_hws_tile.offset) {
3526  // skip tile as not requested
3527  n_old += __kmp_hwloc_skip_PUs_obj(tp, hL); // skip tile
3528  hL = hwloc_get_next_obj_by_depth(tp, L2depth, hL);
3529  continue; // move to next tile
3530  }
3531  // tile requested, go down the topology tree
3532  nC = 0;
3533  hC = NULL;
3534  // num cores in current tile
3535  int NC = __kmp_hwloc_count_children_by_type(tp, hL,
3536  HWLOC_OBJ_CORE, &hC);
3537  for (int c = 0; c < NC; ++c) {
3538  // Check Core ---------------------------------------
3539  if (!__kmp_hwloc_obj_has_PUs(tp, hC)) {
3540  hC = hwloc_get_next_obj_by_type(tp, HWLOC_OBJ_CORE, hC);
3541  continue; // skip core if all PUs are out of fullMask
3542  }
3543  ++nC;
3544  if (nC <= __kmp_hws_core.offset ||
3545  nC > __kmp_hws_core.num + __kmp_hws_core.offset) {
3546  // skip node as not requested
3547  n_old += __kmp_hwloc_skip_PUs_obj(tp, hC); // skip core
3548  hC = hwloc_get_next_obj_by_type(tp, HWLOC_OBJ_CORE, hC);
3549  continue; // move to next node
3550  }
3551  // core requested, go down to PUs
3552  nT = 0;
3553  nTr = 0;
3554  hT = NULL;
3555  // num procs in current core
3556  int NT = __kmp_hwloc_count_children_by_type(tp, hC,
3557  HWLOC_OBJ_PU, &hT);
3558  for (int t = 0; t < NT; ++t) {
3559  // Check PU ---------------------------------------
3560  idx = hT->os_index;
3561  if (!KMP_CPU_ISSET(idx, __kmp_affin_fullMask)) {
3562  hT = hwloc_get_next_obj_by_type(tp, HWLOC_OBJ_PU, hT);
3563  continue; // skip PU if not in fullMask
3564  }
3565  ++nT;
3566  if (nT <= __kmp_hws_proc.offset ||
3567  nT > __kmp_hws_proc.num + __kmp_hws_proc.offset) {
3568  // skip PU
3569  KMP_CPU_CLR(idx, __kmp_affin_fullMask);
3570  ++n_old;
3571  KC_TRACE(200, ("KMP_HW_SUBSET: skipped proc %d\n", idx));
3572  hT = hwloc_get_next_obj_by_type(tp, HWLOC_OBJ_PU, hT);
3573  continue; // move to next node
3574  }
3575  ++nTr;
3576  if (pAddr) // collect requested thread's data
3577  newAddr[n_new] = (*pAddr)[n_old];
3578  ++n_new;
3579  ++n_old;
3580  hT = hwloc_get_next_obj_by_type(tp, HWLOC_OBJ_PU, hT);
3581  } // threads loop
3582  if (nTr > 0) {
3583  ++nCr; // num cores per socket
3584  ++nCo; // total num cores
3585  if (nTr > nTpC)
3586  nTpC = nTr; // calc max threads per core
3587  }
3588  hC = hwloc_get_next_obj_by_type(tp, HWLOC_OBJ_CORE, hC);
3589  } // cores loop
3590  hL = hwloc_get_next_obj_by_depth(tp, L2depth, hL);
3591  } // tiles loop
3592  } else { // tile_support
3593  // no tiles, check cores
3594  nC = 0;
3595  hC = NULL;
3596  // num cores in current node
3597  int NC =
3598  __kmp_hwloc_count_children_by_type(tp, hN, HWLOC_OBJ_CORE, &hC);
3599  for (int c = 0; c < NC; ++c) {
3600  // Check Core ---------------------------------------
3601  if (!__kmp_hwloc_obj_has_PUs(tp, hC)) {
3602  hC = hwloc_get_next_obj_by_type(tp, HWLOC_OBJ_CORE, hC);
3603  continue; // skip core if all PUs are out of fullMask
3604  }
3605  ++nC;
3606  if (nC <= __kmp_hws_core.offset ||
3607  nC > __kmp_hws_core.num + __kmp_hws_core.offset) {
3608  // skip node as not requested
3609  n_old += __kmp_hwloc_skip_PUs_obj(tp, hC); // skip core
3610  hC = hwloc_get_next_obj_by_type(tp, HWLOC_OBJ_CORE, hC);
3611  continue; // move to next node
3612  }
3613  // core requested, go down to PUs
3614  nT = 0;
3615  nTr = 0;
3616  hT = NULL;
3617  int NT =
3618  __kmp_hwloc_count_children_by_type(tp, hC, HWLOC_OBJ_PU, &hT);
3619  for (int t = 0; t < NT; ++t) {
3620  // Check PU ---------------------------------------
3621  idx = hT->os_index;
3622  if (!KMP_CPU_ISSET(idx, __kmp_affin_fullMask)) {
3623  hT = hwloc_get_next_obj_by_type(tp, HWLOC_OBJ_PU, hT);
3624  continue; // skip PU if not in fullMask
3625  }
3626  ++nT;
3627  if (nT <= __kmp_hws_proc.offset ||
3628  nT > __kmp_hws_proc.num + __kmp_hws_proc.offset) {
3629  // skip PU
3630  KMP_CPU_CLR(idx, __kmp_affin_fullMask);
3631  ++n_old;
3632  KC_TRACE(200, ("KMP_HW_SUBSET: skipped proc %d\n", idx));
3633  hT = hwloc_get_next_obj_by_type(tp, HWLOC_OBJ_PU, hT);
3634  continue; // move to next node
3635  }
3636  ++nTr;
3637  if (pAddr) // collect requested thread's data
3638  newAddr[n_new] = (*pAddr)[n_old];
3639  ++n_new;
3640  ++n_old;
3641  hT = hwloc_get_next_obj_by_type(tp, HWLOC_OBJ_PU, hT);
3642  } // threads loop
3643  if (nTr > 0) {
3644  ++nCr; // num cores per socket
3645  ++nCo; // total num cores
3646  if (nTr > nTpC)
3647  nTpC = nTr; // calc max threads per core
3648  }
3649  hC = hwloc_get_next_obj_by_type(tp, HWLOC_OBJ_CORE, hC);
3650  } // cores loop
3651  } // tiles support
3652  hN = hwloc_get_next_obj_by_type(tp, HWLOC_OBJ_NUMANODE, hN);
3653  } // nodes loop
3654  } else { // numa_support
3655  // no NUMA support
3656  if (tile_support) {
3657  nL = 0;
3658  hL = NULL;
3659  // num tiles in current socket
3660  int NL = __kmp_hwloc_count_children_by_depth(tp, hS, L2depth, &hL);
3661  for (int l = 0; l < NL; ++l) {
3662  // Check L2 (tile) ------------------------------------
3663  if (!__kmp_hwloc_obj_has_PUs(tp, hL)) {
3664  hL = hwloc_get_next_obj_by_depth(tp, L2depth, hL);
3665  continue; // skip tile if all PUs are out of fullMask
3666  }
3667  ++nL;
3668  if (nL <= __kmp_hws_tile.offset ||
3669  nL > __kmp_hws_tile.num + __kmp_hws_tile.offset) {
3670  // skip tile as not requested
3671  n_old += __kmp_hwloc_skip_PUs_obj(tp, hL); // skip tile
3672  hL = hwloc_get_next_obj_by_depth(tp, L2depth, hL);
3673  continue; // move to next tile
3674  }
3675  // tile requested, go down the topology tree
3676  nC = 0;
3677  hC = NULL;
3678  // num cores per tile
3679  int NC =
3680  __kmp_hwloc_count_children_by_type(tp, hL, HWLOC_OBJ_CORE, &hC);
3681  for (int c = 0; c < NC; ++c) {
3682  // Check Core ---------------------------------------
3683  if (!__kmp_hwloc_obj_has_PUs(tp, hC)) {
3684  hC = hwloc_get_next_obj_by_type(tp, HWLOC_OBJ_CORE, hC);
3685  continue; // skip core if all PUs are out of fullMask
3686  }
3687  ++nC;
3688  if (nC <= __kmp_hws_core.offset ||
3689  nC > __kmp_hws_core.num + __kmp_hws_core.offset) {
3690  // skip node as not requested
3691  n_old += __kmp_hwloc_skip_PUs_obj(tp, hC); // skip core
3692  hC = hwloc_get_next_obj_by_type(tp, HWLOC_OBJ_CORE, hC);
3693  continue; // move to next node
3694  }
3695  // core requested, go down to PUs
3696  nT = 0;
3697  nTr = 0;
3698  hT = NULL;
3699  // num procs per core
3700  int NT =
3701  __kmp_hwloc_count_children_by_type(tp, hC, HWLOC_OBJ_PU, &hT);
3702  for (int t = 0; t < NT; ++t) {
3703  // Check PU ---------------------------------------
3704  idx = hT->os_index;
3705  if (!KMP_CPU_ISSET(idx, __kmp_affin_fullMask)) {
3706  hT = hwloc_get_next_obj_by_type(tp, HWLOC_OBJ_PU, hT);
3707  continue; // skip PU if not in fullMask
3708  }
3709  ++nT;
3710  if (nT <= __kmp_hws_proc.offset ||
3711  nT > __kmp_hws_proc.num + __kmp_hws_proc.offset) {
3712  // skip PU
3713  KMP_CPU_CLR(idx, __kmp_affin_fullMask);
3714  ++n_old;
3715  KC_TRACE(200, ("KMP_HW_SUBSET: skipped proc %d\n", idx));
3716  hT = hwloc_get_next_obj_by_type(tp, HWLOC_OBJ_PU, hT);
3717  continue; // move to next node
3718  }
3719  ++nTr;
3720  if (pAddr) // collect requested thread's data
3721  newAddr[n_new] = (*pAddr)[n_old];
3722  ++n_new;
3723  ++n_old;
3724  hT = hwloc_get_next_obj_by_type(tp, HWLOC_OBJ_PU, hT);
3725  } // threads loop
3726  if (nTr > 0) {
3727  ++nCr; // num cores per socket
3728  ++nCo; // total num cores
3729  if (nTr > nTpC)
3730  nTpC = nTr; // calc max threads per core
3731  }
3732  hC = hwloc_get_next_obj_by_type(tp, HWLOC_OBJ_CORE, hC);
3733  } // cores loop
3734  hL = hwloc_get_next_obj_by_depth(tp, L2depth, hL);
3735  } // tiles loop
3736  } else { // tile_support
3737  // no tiles, check cores
3738  nC = 0;
3739  hC = NULL;
3740  // num cores in socket
3741  int NC =
3742  __kmp_hwloc_count_children_by_type(tp, hS, HWLOC_OBJ_CORE, &hC);
3743  for (int c = 0; c < NC; ++c) {
3744  // Check Core -------------------------------------------
3745  if (!__kmp_hwloc_obj_has_PUs(tp, hC)) {
3746  hC = hwloc_get_next_obj_by_type(tp, HWLOC_OBJ_CORE, hC);
3747  continue; // skip core if all PUs are out of fullMask
3748  }
3749  ++nC;
3750  if (nC <= __kmp_hws_core.offset ||
3751  nC > __kmp_hws_core.num + __kmp_hws_core.offset) {
3752  // skip node as not requested
3753  n_old += __kmp_hwloc_skip_PUs_obj(tp, hC); // skip core
3754  hC = hwloc_get_next_obj_by_type(tp, HWLOC_OBJ_CORE, hC);
3755  continue; // move to next node
3756  }
3757  // core requested, go down to PUs
3758  nT = 0;
3759  nTr = 0;
3760  hT = NULL;
3761  // num procs per core
3762  int NT =
3763  __kmp_hwloc_count_children_by_type(tp, hC, HWLOC_OBJ_PU, &hT);
3764  for (int t = 0; t < NT; ++t) {
3765  // Check PU ---------------------------------------
3766  idx = hT->os_index;
3767  if (!KMP_CPU_ISSET(idx, __kmp_affin_fullMask)) {
3768  hT = hwloc_get_next_obj_by_type(tp, HWLOC_OBJ_PU, hT);
3769  continue; // skip PU if not in fullMask
3770  }
3771  ++nT;
3772  if (nT <= __kmp_hws_proc.offset ||
3773  nT > __kmp_hws_proc.num + __kmp_hws_proc.offset) {
3774  // skip PU
3775  KMP_CPU_CLR(idx, __kmp_affin_fullMask);
3776  ++n_old;
3777  KC_TRACE(200, ("KMP_HW_SUBSET: skipped proc %d\n", idx));
3778  hT = hwloc_get_next_obj_by_type(tp, HWLOC_OBJ_PU, hT);
3779  continue; // move to next node
3780  }
3781  ++nTr;
3782  if (pAddr) // collect requested thread's data
3783  newAddr[n_new] = (*pAddr)[n_old];
3784  ++n_new;
3785  ++n_old;
3786  hT = hwloc_get_next_obj_by_type(tp, HWLOC_OBJ_PU, hT);
3787  } // threads loop
3788  if (nTr > 0) {
3789  ++nCr; // num cores per socket
3790  ++nCo; // total num cores
3791  if (nTr > nTpC)
3792  nTpC = nTr; // calc max threads per core
3793  }
3794  hC = hwloc_get_next_obj_by_type(tp, HWLOC_OBJ_CORE, hC);
3795  } // cores loop
3796  } // tiles support
3797  } // numa_support
3798  if (nCr > 0) { // found cores?
3799  ++nPkg; // num sockets
3800  if (nCr > nCpP)
3801  nCpP = nCr; // calc max cores per socket
3802  }
3803  } // sockets loop
3804 
3805  // check the subset is valid
3806  KMP_DEBUG_ASSERT(n_old == __kmp_avail_proc);
3807  KMP_DEBUG_ASSERT(nPkg > 0);
3808  KMP_DEBUG_ASSERT(nCpP > 0);
3809  KMP_DEBUG_ASSERT(nTpC > 0);
3810  KMP_DEBUG_ASSERT(nCo > 0);
3811  KMP_DEBUG_ASSERT(nPkg <= nPackages);
3812  KMP_DEBUG_ASSERT(nCpP <= nCoresPerPkg);
3813  KMP_DEBUG_ASSERT(nTpC <= __kmp_nThreadsPerCore);
3814  KMP_DEBUG_ASSERT(nCo <= __kmp_ncores);
3815 
3816  nPackages = nPkg; // correct num sockets
3817  nCoresPerPkg = nCpP; // correct num cores per socket
3818  __kmp_nThreadsPerCore = nTpC; // correct num threads per core
3819  __kmp_avail_proc = n_new; // correct num procs
3820  __kmp_ncores = nCo; // correct num cores
3821  // hwloc topology method end
3822  } else
3823 #endif // KMP_USE_HWLOC
3824  {
3825  int n_old = 0, n_new = 0, proc_num = 0;
3826  if (__kmp_hws_node.num > 0 || __kmp_hws_tile.num > 0) {
3827  KMP_WARNING(AffHWSubsetNoHWLOC);
3828  goto _exit;
3829  }
3830  if (__kmp_hws_socket.num == 0)
3831  __kmp_hws_socket.num = nPackages; // use all available sockets
3832  if (__kmp_hws_core.num == 0)
3833  __kmp_hws_core.num = nCoresPerPkg; // use all available cores
3834  if (__kmp_hws_proc.num == 0 || __kmp_hws_proc.num > __kmp_nThreadsPerCore)
3835  __kmp_hws_proc.num = __kmp_nThreadsPerCore; // use all HW contexts
3836  if (!__kmp_affinity_uniform_topology()) {
3837  KMP_WARNING(AffHWSubsetNonUniform);
3838  goto _exit; // don't support non-uniform topology
3839  }
3840  if (depth > 3) {
3841  KMP_WARNING(AffHWSubsetNonThreeLevel);
3842  goto _exit; // don't support not-3-level topology
3843  }
3844  if (__kmp_hws_socket.offset + __kmp_hws_socket.num > nPackages) {
3845  KMP_WARNING(AffHWSubsetManySockets);
3846  goto _exit;
3847  }
3848  if (__kmp_hws_core.offset + __kmp_hws_core.num > nCoresPerPkg) {
3849  KMP_WARNING(AffHWSubsetManyCores);
3850  goto _exit;
3851  }
3852  // Form the requested subset
3853  if (pAddr) // pAddr is NULL in case of affinity_none
3854  newAddr = (AddrUnsPair *)__kmp_allocate(
3855  sizeof(AddrUnsPair) * __kmp_hws_socket.num * __kmp_hws_core.num *
3856  __kmp_hws_proc.num);
3857  for (int i = 0; i < nPackages; ++i) {
3858  if (i < __kmp_hws_socket.offset ||
3859  i >= __kmp_hws_socket.offset + __kmp_hws_socket.num) {
3860  // skip not-requested socket
3861  n_old += nCoresPerPkg * __kmp_nThreadsPerCore;
3862  if (__kmp_pu_os_idx != NULL) {
3863  // walk through skipped socket
3864  for (int j = 0; j < nCoresPerPkg; ++j) {
3865  for (int k = 0; k < __kmp_nThreadsPerCore; ++k) {
3866  KMP_CPU_CLR(__kmp_pu_os_idx[proc_num], __kmp_affin_fullMask);
3867  ++proc_num;
3868  }
3869  }
3870  }
3871  } else {
3872  // walk through requested socket
3873  for (int j = 0; j < nCoresPerPkg; ++j) {
3874  if (j < __kmp_hws_core.offset ||
3875  j >= __kmp_hws_core.offset +
3876  __kmp_hws_core.num) { // skip not-requested core
3877  n_old += __kmp_nThreadsPerCore;
3878  if (__kmp_pu_os_idx != NULL) {
3879  for (int k = 0; k < __kmp_nThreadsPerCore; ++k) {
3880  KMP_CPU_CLR(__kmp_pu_os_idx[proc_num], __kmp_affin_fullMask);
3881  ++proc_num;
3882  }
3883  }
3884  } else {
3885  // walk through requested core
3886  for (int k = 0; k < __kmp_nThreadsPerCore; ++k) {
3887  if (k < __kmp_hws_proc.num) {
3888  if (pAddr) // collect requested thread's data
3889  newAddr[n_new] = (*pAddr)[n_old];
3890  n_new++;
3891  } else {
3892  if (__kmp_pu_os_idx != NULL)
3893  KMP_CPU_CLR(__kmp_pu_os_idx[proc_num], __kmp_affin_fullMask);
3894  }
3895  n_old++;
3896  ++proc_num;
3897  }
3898  }
3899  }
3900  }
3901  }
3902  KMP_DEBUG_ASSERT(n_old == nPackages * nCoresPerPkg * __kmp_nThreadsPerCore);
3903  KMP_DEBUG_ASSERT(n_new ==
3904  __kmp_hws_socket.num * __kmp_hws_core.num *
3905  __kmp_hws_proc.num);
3906  nPackages = __kmp_hws_socket.num; // correct nPackages
3907  nCoresPerPkg = __kmp_hws_core.num; // correct nCoresPerPkg
3908  __kmp_nThreadsPerCore = __kmp_hws_proc.num; // correct __kmp_nThreadsPerCore
3909  __kmp_avail_proc = n_new; // correct avail_proc
3910  __kmp_ncores = nPackages * __kmp_hws_core.num; // correct ncores
3911  } // non-hwloc topology method
3912  if (pAddr) {
3913  __kmp_free(*pAddr);
3914  *pAddr = newAddr; // replace old topology with new one
3915  }
3916  if (__kmp_affinity_verbose) {
3917  KMP_INFORM(AvailableOSProc, "KMP_HW_SUBSET", __kmp_avail_proc);
3918  kmp_str_buf_t buf;
3919  __kmp_str_buf_init(&buf);
3920  __kmp_str_buf_print(&buf, "%d", nPackages);
3921  KMP_INFORM(TopologyExtra, "KMP_HW_SUBSET", buf.str, nCoresPerPkg,
3922  __kmp_nThreadsPerCore, __kmp_ncores);
3923  __kmp_str_buf_free(&buf);
3924  }
3925 _exit:
3926  if (__kmp_pu_os_idx != NULL) {
3927  __kmp_free(__kmp_pu_os_idx);
3928  __kmp_pu_os_idx = NULL;
3929  }
3930 }
3931 
3932 // This function figures out the deepest level at which there is at least one
3933 // cluster/core with more than one processing unit bound to it.
3934 static int __kmp_affinity_find_core_level(const AddrUnsPair *address2os,
3935  int nprocs, int bottom_level) {
3936  int core_level = 0;
3937 
3938  for (int i = 0; i < nprocs; i++) {
3939  for (int j = bottom_level; j > 0; j--) {
3940  if (address2os[i].first.labels[j] > 0) {
3941  if (core_level < (j - 1)) {
3942  core_level = j - 1;
3943  }
3944  }
3945  }
3946  }
3947  return core_level;
3948 }
3949 
3950 // This function counts number of clusters/cores at given level.
3951 static int __kmp_affinity_compute_ncores(const AddrUnsPair *address2os,
3952  int nprocs, int bottom_level,
3953  int core_level) {
3954  int ncores = 0;
3955  int i, j;
3956 
3957  j = bottom_level;
3958  for (i = 0; i < nprocs; i++) {
3959  for (j = bottom_level; j > core_level; j--) {
3960  if ((i + 1) < nprocs) {
3961  if (address2os[i + 1].first.labels[j] > 0) {
3962  break;
3963  }
3964  }
3965  }
3966  if (j == core_level) {
3967  ncores++;
3968  }
3969  }
3970  if (j > core_level) {
3971  // In case of ( nprocs < __kmp_avail_proc ) we may end too deep and miss one
3972  // core. May occur when called from __kmp_affinity_find_core().
3973  ncores++;
3974  }
3975  return ncores;
3976 }
3977 
3978 // This function finds to which cluster/core given processing unit is bound.
3979 static int __kmp_affinity_find_core(const AddrUnsPair *address2os, int proc,
3980  int bottom_level, int core_level) {
3981  return __kmp_affinity_compute_ncores(address2os, proc + 1, bottom_level,
3982  core_level) -
3983  1;
3984 }
3985 
3986 // This function finds maximal number of processing units bound to a
3987 // cluster/core at given level.
3988 static int __kmp_affinity_max_proc_per_core(const AddrUnsPair *address2os,
3989  int nprocs, int bottom_level,
3990  int core_level) {
3991  int maxprocpercore = 0;
3992 
3993  if (core_level < bottom_level) {
3994  for (int i = 0; i < nprocs; i++) {
3995  int percore = address2os[i].first.labels[core_level + 1] + 1;
3996 
3997  if (percore > maxprocpercore) {
3998  maxprocpercore = percore;
3999  }
4000  }
4001  } else {
4002  maxprocpercore = 1;
4003  }
4004  return maxprocpercore;
4005 }
4006 
4007 static AddrUnsPair *address2os = NULL;
4008 static int *procarr = NULL;
4009 static int __kmp_aff_depth = 0;
4010 
4011 #if KMP_USE_HIER_SCHED
4012 #define KMP_EXIT_AFF_NONE \
4013  KMP_ASSERT(__kmp_affinity_type == affinity_none); \
4014  KMP_ASSERT(address2os == NULL); \
4015  __kmp_apply_thread_places(NULL, 0); \
4016  __kmp_create_affinity_none_places(); \
4017  __kmp_dispatch_set_hierarchy_values(); \
4018  return;
4019 #else
4020 #define KMP_EXIT_AFF_NONE \
4021  KMP_ASSERT(__kmp_affinity_type == affinity_none); \
4022  KMP_ASSERT(address2os == NULL); \
4023  __kmp_apply_thread_places(NULL, 0); \
4024  __kmp_create_affinity_none_places(); \
4025  return;
4026 #endif
4027 
4028 // Create a one element mask array (set of places) which only contains the
4029 // initial process's affinity mask
4030 static void __kmp_create_affinity_none_places() {
4031  KMP_ASSERT(__kmp_affin_fullMask != NULL);
4032  KMP_ASSERT(__kmp_affinity_type == affinity_none);
4033  __kmp_affinity_num_masks = 1;
4034  KMP_CPU_ALLOC_ARRAY(__kmp_affinity_masks, __kmp_affinity_num_masks);
4035  kmp_affin_mask_t *dest = KMP_CPU_INDEX(__kmp_affinity_masks, 0);
4036  KMP_CPU_COPY(dest, __kmp_affin_fullMask);
4037 }
4038 
4039 static int __kmp_affinity_cmp_Address_child_num(const void *a, const void *b) {
4040  const Address *aa = &(((const AddrUnsPair *)a)->first);
4041  const Address *bb = &(((const AddrUnsPair *)b)->first);
4042  unsigned depth = aa->depth;
4043  unsigned i;
4044  KMP_DEBUG_ASSERT(depth == bb->depth);
4045  KMP_DEBUG_ASSERT((unsigned)__kmp_affinity_compact <= depth);
4046  KMP_DEBUG_ASSERT(__kmp_affinity_compact >= 0);
4047  for (i = 0; i < (unsigned)__kmp_affinity_compact; i++) {
4048  int j = depth - i - 1;
4049  if (aa->childNums[j] < bb->childNums[j])
4050  return -1;
4051  if (aa->childNums[j] > bb->childNums[j])
4052  return 1;
4053  }
4054  for (; i < depth; i++) {
4055  int j = i - __kmp_affinity_compact;
4056  if (aa->childNums[j] < bb->childNums[j])
4057  return -1;
4058  if (aa->childNums[j] > bb->childNums[j])
4059  return 1;
4060  }
4061  return 0;
4062 }
4063 
4064 static void __kmp_aux_affinity_initialize(void) {
4065  if (__kmp_affinity_masks != NULL) {
4066  KMP_ASSERT(__kmp_affin_fullMask != NULL);
4067  return;
4068  }
4069 
4070  // Create the "full" mask - this defines all of the processors that we
4071  // consider to be in the machine model. If respect is set, then it is the
4072  // initialization thread's affinity mask. Otherwise, it is all processors that
4073  // we know about on the machine.
4074  if (__kmp_affin_fullMask == NULL) {
4075  KMP_CPU_ALLOC(__kmp_affin_fullMask);
4076  }
4077  if (KMP_AFFINITY_CAPABLE()) {
4078  __kmp_get_system_affinity(__kmp_affin_fullMask, TRUE);
4079  if (__kmp_affinity_respect_mask) {
4080  // Count the number of available processors.
4081  unsigned i;
4082  __kmp_avail_proc = 0;
4083  KMP_CPU_SET_ITERATE(i, __kmp_affin_fullMask) {
4084  if (!KMP_CPU_ISSET(i, __kmp_affin_fullMask)) {
4085  continue;
4086  }
4087  __kmp_avail_proc++;
4088  }
4089  if (__kmp_avail_proc > __kmp_xproc) {
4090  if (__kmp_affinity_verbose ||
4091  (__kmp_affinity_warnings &&
4092  (__kmp_affinity_type != affinity_none))) {
4093  KMP_WARNING(ErrorInitializeAffinity);
4094  }
4095  __kmp_affinity_type = affinity_none;
4096  KMP_AFFINITY_DISABLE();
4097  return;
4098  }
4099 
4100  if (__kmp_affinity_verbose) {
4101  char buf[KMP_AFFIN_MASK_PRINT_LEN];
4102  __kmp_affinity_print_mask(buf, KMP_AFFIN_MASK_PRINT_LEN,
4103  __kmp_affin_fullMask);
4104  KMP_INFORM(InitOSProcSetRespect, "KMP_AFFINITY", buf);
4105  }
4106  } else {
4107  if (__kmp_affinity_verbose) {
4108  char buf[KMP_AFFIN_MASK_PRINT_LEN];
4109  __kmp_affinity_print_mask(buf, KMP_AFFIN_MASK_PRINT_LEN,
4110  __kmp_affin_fullMask);
4111  KMP_INFORM(InitOSProcSetNotRespect, "KMP_AFFINITY", buf);
4112  }
4113  __kmp_affinity_entire_machine_mask(__kmp_affin_fullMask);
4114  __kmp_avail_proc = __kmp_xproc;
4115 #if KMP_OS_WINDOWS
4116  // Set the process affinity mask since threads' affinity
4117  // masks must be subset of process mask in Windows* OS
4118  __kmp_affin_fullMask->set_process_affinity(true);
4119 #endif
4120  }
4121  }
4122 
4123  if (__kmp_affinity_gran == affinity_gran_tile &&
4124  // check if user's request is valid
4125  __kmp_affinity_dispatch->get_api_type() == KMPAffinity::NATIVE_OS) {
4126  KMP_WARNING(AffTilesNoHWLOC, "KMP_AFFINITY");
4127  __kmp_affinity_gran = affinity_gran_package;
4128  }
4129 
4130  int depth = -1;
4131  kmp_i18n_id_t msg_id = kmp_i18n_null;
4132 
4133  // For backward compatibility, setting KMP_CPUINFO_FILE =>
4134  // KMP_TOPOLOGY_METHOD=cpuinfo
4135  if ((__kmp_cpuinfo_file != NULL) &&
4136  (__kmp_affinity_top_method == affinity_top_method_all)) {
4137  __kmp_affinity_top_method = affinity_top_method_cpuinfo;
4138  }
4139 
4140  if (__kmp_affinity_top_method == affinity_top_method_all) {
4141  // In the default code path, errors are not fatal - we just try using
4142  // another method. We only emit a warning message if affinity is on, or the
4143  // verbose flag is set, and the nowarnings flag was not set.
4144  const char *file_name = NULL;
4145  int line = 0;
4146 #if KMP_USE_HWLOC
4147  if (depth < 0 &&
4148  __kmp_affinity_dispatch->get_api_type() == KMPAffinity::HWLOC) {
4149  if (__kmp_affinity_verbose) {
4150  KMP_INFORM(AffUsingHwloc, "KMP_AFFINITY");
4151  }
4152  if (!__kmp_hwloc_error) {
4153  depth = __kmp_affinity_create_hwloc_map(&address2os, &msg_id);
4154  if (depth == 0) {
4155  KMP_EXIT_AFF_NONE;
4156  } else if (depth < 0 && __kmp_affinity_verbose) {
4157  KMP_INFORM(AffIgnoringHwloc, "KMP_AFFINITY");
4158  }
4159  } else if (__kmp_affinity_verbose) {
4160  KMP_INFORM(AffIgnoringHwloc, "KMP_AFFINITY");
4161  }
4162  }
4163 #endif
4164 
4165 #if KMP_ARCH_X86 || KMP_ARCH_X86_64
4166 
4167  if (depth < 0) {
4168  if (__kmp_affinity_verbose) {
4169  KMP_INFORM(AffInfoStr, "KMP_AFFINITY", KMP_I18N_STR(Decodingx2APIC));
4170  }
4171 
4172  file_name = NULL;
4173  depth = __kmp_affinity_create_x2apicid_map(&address2os, &msg_id);
4174  if (depth == 0) {
4175  KMP_EXIT_AFF_NONE;
4176  }
4177 
4178  if (depth < 0) {
4179  if (__kmp_affinity_verbose) {
4180  if (msg_id != kmp_i18n_null) {
4181  KMP_INFORM(AffInfoStrStr, "KMP_AFFINITY",
4182  __kmp_i18n_catgets(msg_id),
4183  KMP_I18N_STR(DecodingLegacyAPIC));
4184  } else {
4185  KMP_INFORM(AffInfoStr, "KMP_AFFINITY",
4186  KMP_I18N_STR(DecodingLegacyAPIC));
4187  }
4188  }
4189 
4190  file_name = NULL;
4191  depth = __kmp_affinity_create_apicid_map(&address2os, &msg_id);
4192  if (depth == 0) {
4193  KMP_EXIT_AFF_NONE;
4194  }
4195  }
4196  }
4197 
4198 #endif /* KMP_ARCH_X86 || KMP_ARCH_X86_64 */
4199 
4200 #if KMP_OS_LINUX
4201 
4202  if (depth < 0) {
4203  if (__kmp_affinity_verbose) {
4204  if (msg_id != kmp_i18n_null) {
4205  KMP_INFORM(AffStrParseFilename, "KMP_AFFINITY",
4206  __kmp_i18n_catgets(msg_id), "/proc/cpuinfo");
4207  } else {
4208  KMP_INFORM(AffParseFilename, "KMP_AFFINITY", "/proc/cpuinfo");
4209  }
4210  }
4211 
4212  kmp_safe_raii_file_t f("/proc/cpuinfo", "r");
4213  depth = __kmp_affinity_create_cpuinfo_map(&address2os, &line, &msg_id, f);
4214  if (depth == 0) {
4215  KMP_EXIT_AFF_NONE;
4216  }
4217  }
4218 
4219 #endif /* KMP_OS_LINUX */
4220 
4221 #if KMP_GROUP_AFFINITY
4222 
4223  if ((depth < 0) && (__kmp_num_proc_groups > 1)) {
4224  if (__kmp_affinity_verbose) {
4225  KMP_INFORM(AffWindowsProcGroupMap, "KMP_AFFINITY");
4226  }
4227 
4228  depth = __kmp_affinity_create_proc_group_map(&address2os, &msg_id);
4229  KMP_ASSERT(depth != 0);
4230  }
4231 
4232 #endif /* KMP_GROUP_AFFINITY */
4233 
4234  if (depth < 0) {
4235  if (__kmp_affinity_verbose && (msg_id != kmp_i18n_null)) {
4236  if (file_name == NULL) {
4237  KMP_INFORM(UsingFlatOS, __kmp_i18n_catgets(msg_id));
4238  } else if (line == 0) {
4239  KMP_INFORM(UsingFlatOSFile, file_name, __kmp_i18n_catgets(msg_id));
4240  } else {
4241  KMP_INFORM(UsingFlatOSFileLine, file_name, line,
4242  __kmp_i18n_catgets(msg_id));
4243  }
4244  }
4245  // FIXME - print msg if msg_id = kmp_i18n_null ???
4246 
4247  file_name = "";
4248  depth = __kmp_affinity_create_flat_map(&address2os, &msg_id);
4249  if (depth == 0) {
4250  KMP_EXIT_AFF_NONE;
4251  }
4252  KMP_ASSERT(depth > 0);
4253  KMP_ASSERT(address2os != NULL);
4254  }
4255  }
4256 
4257 #if KMP_USE_HWLOC
4258  else if (__kmp_affinity_top_method == affinity_top_method_hwloc) {
4259  KMP_ASSERT(__kmp_affinity_dispatch->get_api_type() == KMPAffinity::HWLOC);
4260  if (__kmp_affinity_verbose) {
4261  KMP_INFORM(AffUsingHwloc, "KMP_AFFINITY");
4262  }
4263  depth = __kmp_affinity_create_hwloc_map(&address2os, &msg_id);
4264  if (depth == 0) {
4265  KMP_EXIT_AFF_NONE;
4266  }
4267  }
4268 #endif // KMP_USE_HWLOC
4269 
4270 // If the user has specified that a particular topology discovery method is to be
4271 // used, then we abort if that method fails. The exception is group affinity,
4272 // which might have been implicitly set.
4273 
4274 #if KMP_ARCH_X86 || KMP_ARCH_X86_64
4275 
4276  else if (__kmp_affinity_top_method == affinity_top_method_x2apicid) {
4277  if (__kmp_affinity_verbose) {
4278  KMP_INFORM(AffInfoStr, "KMP_AFFINITY", KMP_I18N_STR(Decodingx2APIC));
4279  }
4280 
4281  depth = __kmp_affinity_create_x2apicid_map(&address2os, &msg_id);
4282  if (depth == 0) {
4283  KMP_EXIT_AFF_NONE;
4284  }
4285  if (depth < 0) {
4286  KMP_ASSERT(msg_id != kmp_i18n_null);
4287  KMP_FATAL(MsgExiting, __kmp_i18n_catgets(msg_id));
4288  }
4289  } else if (__kmp_affinity_top_method == affinity_top_method_apicid) {
4290  if (__kmp_affinity_verbose) {
4291  KMP_INFORM(AffInfoStr, "KMP_AFFINITY", KMP_I18N_STR(DecodingLegacyAPIC));
4292  }
4293 
4294  depth = __kmp_affinity_create_apicid_map(&address2os, &msg_id);
4295  if (depth == 0) {
4296  KMP_EXIT_AFF_NONE;
4297  }
4298  if (depth < 0) {
4299  KMP_ASSERT(msg_id != kmp_i18n_null);
4300  KMP_FATAL(MsgExiting, __kmp_i18n_catgets(msg_id));
4301  }
4302  }
4303 
4304 #endif /* KMP_ARCH_X86 || KMP_ARCH_X86_64 */
4305 
4306  else if (__kmp_affinity_top_method == affinity_top_method_cpuinfo) {
4307  const char *filename;
4308  const char *env_var = nullptr;
4309  if (__kmp_cpuinfo_file != NULL) {
4310  filename = __kmp_cpuinfo_file;
4311  env_var = "KMP_CPUINFO_FILE";
4312  } else {
4313  filename = "/proc/cpuinfo";
4314  }
4315 
4316  if (__kmp_affinity_verbose) {
4317  KMP_INFORM(AffParseFilename, "KMP_AFFINITY", filename);
4318  }
4319 
4320  kmp_safe_raii_file_t f(filename, "r", env_var);
4321  int line = 0;
4322  depth = __kmp_affinity_create_cpuinfo_map(&address2os, &line, &msg_id, f);
4323  if (depth < 0) {
4324  KMP_ASSERT(msg_id != kmp_i18n_null);
4325  if (line > 0) {
4326  KMP_FATAL(FileLineMsgExiting, filename, line,
4327  __kmp_i18n_catgets(msg_id));
4328  } else {
4329  KMP_FATAL(FileMsgExiting, filename, __kmp_i18n_catgets(msg_id));
4330  }
4331  }
4332  if (__kmp_affinity_type == affinity_none) {
4333  KMP_ASSERT(depth == 0);
4334  KMP_EXIT_AFF_NONE;
4335  }
4336  }
4337 
4338 #if KMP_GROUP_AFFINITY
4339 
4340  else if (__kmp_affinity_top_method == affinity_top_method_group) {
4341  if (__kmp_affinity_verbose) {
4342  KMP_INFORM(AffWindowsProcGroupMap, "KMP_AFFINITY");
4343  }
4344 
4345  depth = __kmp_affinity_create_proc_group_map(&address2os, &msg_id);
4346  KMP_ASSERT(depth != 0);
4347  if (depth < 0) {
4348  KMP_ASSERT(msg_id != kmp_i18n_null);
4349  KMP_FATAL(MsgExiting, __kmp_i18n_catgets(msg_id));
4350  }
4351  }
4352 
4353 #endif /* KMP_GROUP_AFFINITY */
4354 
4355  else if (__kmp_affinity_top_method == affinity_top_method_flat) {
4356  if (__kmp_affinity_verbose) {
4357  KMP_INFORM(AffUsingFlatOS, "KMP_AFFINITY");
4358  }
4359 
4360  depth = __kmp_affinity_create_flat_map(&address2os, &msg_id);
4361  if (depth == 0) {
4362  KMP_EXIT_AFF_NONE;
4363  }
4364  // should not fail
4365  KMP_ASSERT(depth > 0);
4366  KMP_ASSERT(address2os != NULL);
4367  }
4368 
4369 #if KMP_USE_HIER_SCHED
4370  __kmp_dispatch_set_hierarchy_values();
4371 #endif
4372 
4373  if (address2os == NULL) {
4374  if (KMP_AFFINITY_CAPABLE() &&
4375  (__kmp_affinity_verbose ||
4376  (__kmp_affinity_warnings && (__kmp_affinity_type != affinity_none)))) {
4377  KMP_WARNING(ErrorInitializeAffinity);
4378  }
4379  __kmp_affinity_type = affinity_none;
4380  __kmp_create_affinity_none_places();
4381  KMP_AFFINITY_DISABLE();
4382  return;
4383  }
4384 
4385  if (__kmp_affinity_gran == affinity_gran_tile
4386 #if KMP_USE_HWLOC
4387  && __kmp_tile_depth == 0
4388 #endif
4389  ) {
4390  // tiles requested but not detected, warn user on this
4391  KMP_WARNING(AffTilesNoTiles, "KMP_AFFINITY");
4392  }
4393 
4394  __kmp_apply_thread_places(&address2os, depth);
4395 
4396  // Create the table of masks, indexed by thread Id.
4397  unsigned maxIndex;
4398  unsigned numUnique;
4399  kmp_affin_mask_t *osId2Mask =
4400  __kmp_create_masks(&maxIndex, &numUnique, address2os, __kmp_avail_proc);
4401  if (__kmp_affinity_gran_levels == 0) {
4402  KMP_DEBUG_ASSERT((int)numUnique == __kmp_avail_proc);
4403  }
4404 
4405  // Set the childNums vector in all Address objects. This must be done before
4406  // we can sort using __kmp_affinity_cmp_Address_child_num(), which takes into
4407  // account the setting of __kmp_affinity_compact.
4408  __kmp_affinity_assign_child_nums(address2os, __kmp_avail_proc);
4409 
4410  switch (__kmp_affinity_type) {
4411 
4412  case affinity_explicit:
4413  KMP_DEBUG_ASSERT(__kmp_affinity_proclist != NULL);
4414  if (__kmp_nested_proc_bind.bind_types[0] == proc_bind_intel) {
4415  __kmp_affinity_process_proclist(
4416  &__kmp_affinity_masks, &__kmp_affinity_num_masks,
4417  __kmp_affinity_proclist, osId2Mask, maxIndex);
4418  } else {
4419  __kmp_affinity_process_placelist(
4420  &__kmp_affinity_masks, &__kmp_affinity_num_masks,
4421  __kmp_affinity_proclist, osId2Mask, maxIndex);
4422  }
4423  if (__kmp_affinity_num_masks == 0) {
4424  if (__kmp_affinity_verbose ||
4425  (__kmp_affinity_warnings && (__kmp_affinity_type != affinity_none))) {
4426  KMP_WARNING(AffNoValidProcID);
4427  }
4428  __kmp_affinity_type = affinity_none;
4429  __kmp_create_affinity_none_places();
4430  return;
4431  }
4432  break;
4433 
4434  // The other affinity types rely on sorting the Addresses according to some
4435  // permutation of the machine topology tree. Set __kmp_affinity_compact and
4436  // __kmp_affinity_offset appropriately, then jump to a common code fragment
4437  // to do the sort and create the array of affinity masks.
4438 
4439  case affinity_logical:
4440  __kmp_affinity_compact = 0;
4441  if (__kmp_affinity_offset) {
4442  __kmp_affinity_offset =
4443  __kmp_nThreadsPerCore * __kmp_affinity_offset % __kmp_avail_proc;
4444  }
4445  goto sortAddresses;
4446 
4447  case affinity_physical:
4448  if (__kmp_nThreadsPerCore > 1) {
4449  __kmp_affinity_compact = 1;
4450  if (__kmp_affinity_compact >= depth) {
4451  __kmp_affinity_compact = 0;
4452  }
4453  } else {
4454  __kmp_affinity_compact = 0;
4455  }
4456  if (__kmp_affinity_offset) {
4457  __kmp_affinity_offset =
4458  __kmp_nThreadsPerCore * __kmp_affinity_offset % __kmp_avail_proc;
4459  }
4460  goto sortAddresses;
4461 
4462  case affinity_scatter:
4463  if (__kmp_affinity_compact >= depth) {
4464  __kmp_affinity_compact = 0;
4465  } else {
4466  __kmp_affinity_compact = depth - 1 - __kmp_affinity_compact;
4467  }
4468  goto sortAddresses;
4469 
4470  case affinity_compact:
4471  if (__kmp_affinity_compact >= depth) {
4472  __kmp_affinity_compact = depth - 1;
4473  }
4474  goto sortAddresses;
4475 
4476  case affinity_balanced:
4477  if (depth <= 1) {
4478  if (__kmp_affinity_verbose || __kmp_affinity_warnings) {
4479  KMP_WARNING(AffBalancedNotAvail, "KMP_AFFINITY");
4480  }
4481  __kmp_affinity_type = affinity_none;
4482  __kmp_create_affinity_none_places();
4483  return;
4484  } else if (!__kmp_affinity_uniform_topology()) {
4485  // Save the depth for further usage
4486  __kmp_aff_depth = depth;
4487 
4488  int core_level = __kmp_affinity_find_core_level(
4489  address2os, __kmp_avail_proc, depth - 1);
4490  int ncores = __kmp_affinity_compute_ncores(address2os, __kmp_avail_proc,
4491  depth - 1, core_level);
4492  int maxprocpercore = __kmp_affinity_max_proc_per_core(
4493  address2os, __kmp_avail_proc, depth - 1, core_level);
4494 
4495  int nproc = ncores * maxprocpercore;
4496  if ((nproc < 2) || (nproc < __kmp_avail_proc)) {
4497  if (__kmp_affinity_verbose || __kmp_affinity_warnings) {
4498  KMP_WARNING(AffBalancedNotAvail, "KMP_AFFINITY");
4499  }
4500  __kmp_affinity_type = affinity_none;
4501  return;
4502  }
4503 
4504  procarr = (int *)__kmp_allocate(sizeof(int) * nproc);
4505  for (int i = 0; i < nproc; i++) {
4506  procarr[i] = -1;
4507  }
4508 
4509  int lastcore = -1;
4510  int inlastcore = 0;
4511  for (int i = 0; i < __kmp_avail_proc; i++) {
4512  int proc = address2os[i].second;
4513  int core =
4514  __kmp_affinity_find_core(address2os, i, depth - 1, core_level);
4515 
4516  if (core == lastcore) {
4517  inlastcore++;
4518  } else {
4519  inlastcore = 0;
4520  }
4521  lastcore = core;
4522 
4523  procarr[core * maxprocpercore + inlastcore] = proc;
4524  }
4525  }
4526  if (__kmp_affinity_compact >= depth) {
4527  __kmp_affinity_compact = depth - 1;
4528  }
4529 
4530  sortAddresses:
4531  // Allocate the gtid->affinity mask table.
4532  if (__kmp_affinity_dups) {
4533  __kmp_affinity_num_masks = __kmp_avail_proc;
4534  } else {
4535  __kmp_affinity_num_masks = numUnique;
4536  }
4537 
4538  if ((__kmp_nested_proc_bind.bind_types[0] != proc_bind_intel) &&
4539  (__kmp_affinity_num_places > 0) &&
4540  ((unsigned)__kmp_affinity_num_places < __kmp_affinity_num_masks)) {
4541  __kmp_affinity_num_masks = __kmp_affinity_num_places;
4542  }
4543 
4544  KMP_CPU_ALLOC_ARRAY(__kmp_affinity_masks, __kmp_affinity_num_masks);
4545 
4546  // Sort the address2os table according to the current setting of
4547  // __kmp_affinity_compact, then fill out __kmp_affinity_masks.
4548  qsort(address2os, __kmp_avail_proc, sizeof(*address2os),
4549  __kmp_affinity_cmp_Address_child_num);
4550  {
4551  int i;
4552  unsigned j;
4553  for (i = 0, j = 0; i < __kmp_avail_proc; i++) {
4554  if ((!__kmp_affinity_dups) && (!address2os[i].first.leader)) {
4555  continue;
4556  }
4557  unsigned osId = address2os[i].second;
4558  kmp_affin_mask_t *src = KMP_CPU_INDEX(osId2Mask, osId);
4559  kmp_affin_mask_t *dest = KMP_CPU_INDEX(__kmp_affinity_masks, j);
4560  KMP_ASSERT(KMP_CPU_ISSET(osId, src));
4561  KMP_CPU_COPY(dest, src);
4562  if (++j >= __kmp_affinity_num_masks) {
4563  break;
4564  }
4565  }
4566  KMP_DEBUG_ASSERT(j == __kmp_affinity_num_masks);
4567  }
4568  break;
4569 
4570  default:
4571  KMP_ASSERT2(0, "Unexpected affinity setting");
4572  }
4573 
4574  KMP_CPU_FREE_ARRAY(osId2Mask, maxIndex + 1);
4575  machine_hierarchy.init(address2os, __kmp_avail_proc);
4576 }
4577 #undef KMP_EXIT_AFF_NONE
4578 
4579 void __kmp_affinity_initialize(void) {
4580  // Much of the code above was written assuming that if a machine was not
4581  // affinity capable, then __kmp_affinity_type == affinity_none. We now
4582  // explicitly represent this as __kmp_affinity_type == affinity_disabled.
4583  // There are too many checks for __kmp_affinity_type == affinity_none
4584  // in this code. Instead of trying to change them all, check if
4585  // __kmp_affinity_type == affinity_disabled, and if so, slam it with
4586  // affinity_none, call the real initialization routine, then restore
4587  // __kmp_affinity_type to affinity_disabled.
4588  int disabled = (__kmp_affinity_type == affinity_disabled);
4589  if (!KMP_AFFINITY_CAPABLE()) {
4590  KMP_ASSERT(disabled);
4591  }
4592  if (disabled) {
4593  __kmp_affinity_type = affinity_none;
4594  }
4595  __kmp_aux_affinity_initialize();
4596  if (disabled) {
4597  __kmp_affinity_type = affinity_disabled;
4598  }
4599 }
4600 
4601 void __kmp_affinity_uninitialize(void) {
4602  if (__kmp_affinity_masks != NULL) {
4603  KMP_CPU_FREE_ARRAY(__kmp_affinity_masks, __kmp_affinity_num_masks);
4604  __kmp_affinity_masks = NULL;
4605  }
4606  if (__kmp_affin_fullMask != NULL) {
4607  KMP_CPU_FREE(__kmp_affin_fullMask);
4608  __kmp_affin_fullMask = NULL;
4609  }
4610  __kmp_affinity_num_masks = 0;
4611  __kmp_affinity_type = affinity_default;
4612  __kmp_affinity_num_places = 0;
4613  if (__kmp_affinity_proclist != NULL) {
4614  __kmp_free(__kmp_affinity_proclist);
4615  __kmp_affinity_proclist = NULL;
4616  }
4617  if (address2os != NULL) {
4618  __kmp_free(address2os);
4619  address2os = NULL;
4620  }
4621  if (procarr != NULL) {
4622  __kmp_free(procarr);
4623  procarr = NULL;
4624  }
4625 #if KMP_USE_HWLOC
4626  if (__kmp_hwloc_topology != NULL) {
4627  hwloc_topology_destroy(__kmp_hwloc_topology);
4628  __kmp_hwloc_topology = NULL;
4629  }
4630 #endif
4631  KMPAffinity::destroy_api();
4632 }
4633 
4634 void __kmp_affinity_set_init_mask(int gtid, int isa_root) {
4635  if (!KMP_AFFINITY_CAPABLE()) {
4636  return;
4637  }
4638 
4639  kmp_info_t *th = (kmp_info_t *)TCR_SYNC_PTR(__kmp_threads[gtid]);
4640  if (th->th.th_affin_mask == NULL) {
4641  KMP_CPU_ALLOC(th->th.th_affin_mask);
4642  } else {
4643  KMP_CPU_ZERO(th->th.th_affin_mask);
4644  }
4645 
4646  // Copy the thread mask to the kmp_info_t structure. If
4647  // __kmp_affinity_type == affinity_none, copy the "full" mask, i.e. one that
4648  // has all of the OS proc ids set, or if __kmp_affinity_respect_mask is set,
4649  // then the full mask is the same as the mask of the initialization thread.
4650  kmp_affin_mask_t *mask;
4651  int i;
4652 
4653  if (KMP_AFFINITY_NON_PROC_BIND) {
4654  if ((__kmp_affinity_type == affinity_none) ||
4655  (__kmp_affinity_type == affinity_balanced)) {
4656 #if KMP_GROUP_AFFINITY
4657  if (__kmp_num_proc_groups > 1) {
4658  return;
4659  }
4660 #endif
4661  KMP_ASSERT(__kmp_affin_fullMask != NULL);
4662  i = 0;
4663  mask = __kmp_affin_fullMask;
4664  } else {
4665  KMP_DEBUG_ASSERT(__kmp_affinity_num_masks > 0);
4666  i = (gtid + __kmp_affinity_offset) % __kmp_affinity_num_masks;
4667  mask = KMP_CPU_INDEX(__kmp_affinity_masks, i);
4668  }
4669  } else {
4670  if ((!isa_root) ||
4671  (__kmp_nested_proc_bind.bind_types[0] == proc_bind_false)) {
4672 #if KMP_GROUP_AFFINITY
4673  if (__kmp_num_proc_groups > 1) {
4674  return;
4675  }
4676 #endif
4677  KMP_ASSERT(__kmp_affin_fullMask != NULL);
4678  i = KMP_PLACE_ALL;
4679  mask = __kmp_affin_fullMask;
4680  } else {
4681  // int i = some hash function or just a counter that doesn't
4682  // always start at 0. Use gtid for now.
4683  KMP_DEBUG_ASSERT(__kmp_affinity_num_masks > 0);
4684  i = (gtid + __kmp_affinity_offset) % __kmp_affinity_num_masks;
4685  mask = KMP_CPU_INDEX(__kmp_affinity_masks, i);
4686  }
4687  }
4688 
4689  th->th.th_current_place = i;
4690  if (isa_root) {
4691  th->th.th_new_place = i;
4692  th->th.th_first_place = 0;
4693  th->th.th_last_place = __kmp_affinity_num_masks - 1;
4694  } else if (KMP_AFFINITY_NON_PROC_BIND) {
4695  // When using a Non-OMP_PROC_BIND affinity method,
4696  // set all threads' place-partition-var to the entire place list
4697  th->th.th_first_place = 0;
4698  th->th.th_last_place = __kmp_affinity_num_masks - 1;
4699  }
4700 
4701  if (i == KMP_PLACE_ALL) {
4702  KA_TRACE(100, ("__kmp_affinity_set_init_mask: binding T#%d to all places\n",
4703  gtid));
4704  } else {
4705  KA_TRACE(100, ("__kmp_affinity_set_init_mask: binding T#%d to place %d\n",
4706  gtid, i));
4707  }
4708 
4709  KMP_CPU_COPY(th->th.th_affin_mask, mask);
4710 
4711  if (__kmp_affinity_verbose
4712  /* to avoid duplicate printing (will be correctly printed on barrier) */
4713  && (__kmp_affinity_type == affinity_none ||
4714  (i != KMP_PLACE_ALL && __kmp_affinity_type != affinity_balanced))) {
4715  char buf[KMP_AFFIN_MASK_PRINT_LEN];
4716  __kmp_affinity_print_mask(buf, KMP_AFFIN_MASK_PRINT_LEN,
4717  th->th.th_affin_mask);
4718  KMP_INFORM(BoundToOSProcSet, "KMP_AFFINITY", (kmp_int32)getpid(),
4719  __kmp_gettid(), gtid, buf);
4720  }
4721 
4722 #if KMP_OS_WINDOWS
4723  // On Windows* OS, the process affinity mask might have changed. If the user
4724  // didn't request affinity and this call fails, just continue silently.
4725  // See CQ171393.
4726  if (__kmp_affinity_type == affinity_none) {
4727  __kmp_set_system_affinity(th->th.th_affin_mask, FALSE);
4728  } else
4729 #endif
4730  __kmp_set_system_affinity(th->th.th_affin_mask, TRUE);
4731 }
4732 
4733 void __kmp_affinity_set_place(int gtid) {
4734  if (!KMP_AFFINITY_CAPABLE()) {
4735  return;
4736  }
4737 
4738  kmp_info_t *th = (kmp_info_t *)TCR_SYNC_PTR(__kmp_threads[gtid]);
4739 
4740  KA_TRACE(100, ("__kmp_affinity_set_place: binding T#%d to place %d (current "
4741  "place = %d)\n",
4742  gtid, th->th.th_new_place, th->th.th_current_place));
4743 
4744  // Check that the new place is within this thread's partition.
4745  KMP_DEBUG_ASSERT(th->th.th_affin_mask != NULL);
4746  KMP_ASSERT(th->th.th_new_place >= 0);
4747  KMP_ASSERT((unsigned)th->th.th_new_place <= __kmp_affinity_num_masks);
4748  if (th->th.th_first_place <= th->th.th_last_place) {
4749  KMP_ASSERT((th->th.th_new_place >= th->th.th_first_place) &&
4750  (th->th.th_new_place <= th->th.th_last_place));
4751  } else {
4752  KMP_ASSERT((th->th.th_new_place <= th->th.th_first_place) ||
4753  (th->th.th_new_place >= th->th.th_last_place));
4754  }
4755 
4756  // Copy the thread mask to the kmp_info_t structure,
4757  // and set this thread's affinity.
4758  kmp_affin_mask_t *mask =
4759  KMP_CPU_INDEX(__kmp_affinity_masks, th->th.th_new_place);
4760  KMP_CPU_COPY(th->th.th_affin_mask, mask);
4761  th->th.th_current_place = th->th.th_new_place;
4762 
4763  if (__kmp_affinity_verbose) {
4764  char buf[KMP_AFFIN_MASK_PRINT_LEN];
4765  __kmp_affinity_print_mask(buf, KMP_AFFIN_MASK_PRINT_LEN,
4766  th->th.th_affin_mask);
4767  KMP_INFORM(BoundToOSProcSet, "OMP_PROC_BIND", (kmp_int32)getpid(),
4768  __kmp_gettid(), gtid, buf);
4769  }
4770  __kmp_set_system_affinity(th->th.th_affin_mask, TRUE);
4771 }
4772 
4773 int __kmp_aux_set_affinity(void **mask) {
4774  int gtid;
4775  kmp_info_t *th;
4776  int retval;
4777 
4778  if (!KMP_AFFINITY_CAPABLE()) {
4779  return -1;
4780  }
4781 
4782  gtid = __kmp_entry_gtid();
4783  KA_TRACE(1000, (""); {
4784  char buf[KMP_AFFIN_MASK_PRINT_LEN];
4785  __kmp_affinity_print_mask(buf, KMP_AFFIN_MASK_PRINT_LEN,
4786  (kmp_affin_mask_t *)(*mask));
4787  __kmp_debug_printf(
4788  "kmp_set_affinity: setting affinity mask for thread %d = %s\n", gtid,
4789  buf);
4790  });
4791 
4792  if (__kmp_env_consistency_check) {
4793  if ((mask == NULL) || (*mask == NULL)) {
4794  KMP_FATAL(AffinityInvalidMask, "kmp_set_affinity");
4795  } else {
4796  unsigned proc;
4797  int num_procs = 0;
4798 
4799  KMP_CPU_SET_ITERATE(proc, ((kmp_affin_mask_t *)(*mask))) {
4800  if (!KMP_CPU_ISSET(proc, __kmp_affin_fullMask)) {
4801  KMP_FATAL(AffinityInvalidMask, "kmp_set_affinity");
4802  }
4803  if (!KMP_CPU_ISSET(proc, (kmp_affin_mask_t *)(*mask))) {
4804  continue;
4805  }
4806  num_procs++;
4807  }
4808  if (num_procs == 0) {
4809  KMP_FATAL(AffinityInvalidMask, "kmp_set_affinity");
4810  }
4811 
4812 #if KMP_GROUP_AFFINITY
4813  if (__kmp_get_proc_group((kmp_affin_mask_t *)(*mask)) < 0) {
4814  KMP_FATAL(AffinityInvalidMask, "kmp_set_affinity");
4815  }
4816 #endif /* KMP_GROUP_AFFINITY */
4817  }
4818  }
4819 
4820  th = __kmp_threads[gtid];
4821  KMP_DEBUG_ASSERT(th->th.th_affin_mask != NULL);
4822  retval = __kmp_set_system_affinity((kmp_affin_mask_t *)(*mask), FALSE);
4823  if (retval == 0) {
4824  KMP_CPU_COPY(th->th.th_affin_mask, (kmp_affin_mask_t *)(*mask));
4825  }
4826 
4827  th->th.th_current_place = KMP_PLACE_UNDEFINED;
4828  th->th.th_new_place = KMP_PLACE_UNDEFINED;
4829  th->th.th_first_place = 0;
4830  th->th.th_last_place = __kmp_affinity_num_masks - 1;
4831 
4832  // Turn off 4.0 affinity for the current tread at this parallel level.
4833  th->th.th_current_task->td_icvs.proc_bind = proc_bind_false;
4834 
4835  return retval;
4836 }
4837 
4838 int __kmp_aux_get_affinity(void **mask) {
4839  int gtid;
4840  int retval;
4841  kmp_info_t *th;
4842 
4843  if (!KMP_AFFINITY_CAPABLE()) {
4844  return -1;
4845  }
4846 
4847  gtid = __kmp_entry_gtid();
4848  th = __kmp_threads[gtid];
4849  KMP_DEBUG_ASSERT(th->th.th_affin_mask != NULL);
4850 
4851  KA_TRACE(1000, (""); {
4852  char buf[KMP_AFFIN_MASK_PRINT_LEN];
4853  __kmp_affinity_print_mask(buf, KMP_AFFIN_MASK_PRINT_LEN,
4854  th->th.th_affin_mask);
4855  __kmp_printf("kmp_get_affinity: stored affinity mask for thread %d = %s\n",
4856  gtid, buf);
4857  });
4858 
4859  if (__kmp_env_consistency_check) {
4860  if ((mask == NULL) || (*mask == NULL)) {
4861  KMP_FATAL(AffinityInvalidMask, "kmp_get_affinity");
4862  }
4863  }
4864 
4865 #if !KMP_OS_WINDOWS
4866 
4867  retval = __kmp_get_system_affinity((kmp_affin_mask_t *)(*mask), FALSE);
4868  KA_TRACE(1000, (""); {
4869  char buf[KMP_AFFIN_MASK_PRINT_LEN];
4870  __kmp_affinity_print_mask(buf, KMP_AFFIN_MASK_PRINT_LEN,
4871  (kmp_affin_mask_t *)(*mask));
4872  __kmp_printf("kmp_get_affinity: system affinity mask for thread %d = %s\n",
4873  gtid, buf);
4874  });
4875  return retval;
4876 
4877 #else
4878 
4879  KMP_CPU_COPY((kmp_affin_mask_t *)(*mask), th->th.th_affin_mask);
4880  return 0;
4881 
4882 #endif /* KMP_OS_WINDOWS */
4883 }
4884 
4885 int __kmp_aux_get_affinity_max_proc() {
4886  if (!KMP_AFFINITY_CAPABLE()) {
4887  return 0;
4888  }
4889 #if KMP_GROUP_AFFINITY
4890  if (__kmp_num_proc_groups > 1) {
4891  return (int)(__kmp_num_proc_groups * sizeof(DWORD_PTR) * CHAR_BIT);
4892  }
4893 #endif
4894  return __kmp_xproc;
4895 }
4896 
4897 int __kmp_aux_set_affinity_mask_proc(int proc, void **mask) {
4898  if (!KMP_AFFINITY_CAPABLE()) {
4899  return -1;
4900  }
4901 
4902  KA_TRACE(1000, (""); {
4903  int gtid = __kmp_entry_gtid();
4904  char buf[KMP_AFFIN_MASK_PRINT_LEN];
4905  __kmp_affinity_print_mask(buf, KMP_AFFIN_MASK_PRINT_LEN,
4906  (kmp_affin_mask_t *)(*mask));
4907  __kmp_debug_printf("kmp_set_affinity_mask_proc: setting proc %d in "
4908  "affinity mask for thread %d = %s\n",
4909  proc, gtid, buf);
4910  });
4911 
4912  if (__kmp_env_consistency_check) {
4913  if ((mask == NULL) || (*mask == NULL)) {
4914  KMP_FATAL(AffinityInvalidMask, "kmp_set_affinity_mask_proc");
4915  }
4916  }
4917 
4918  if ((proc < 0) || (proc >= __kmp_aux_get_affinity_max_proc())) {
4919  return -1;
4920  }
4921  if (!KMP_CPU_ISSET(proc, __kmp_affin_fullMask)) {
4922  return -2;
4923  }
4924 
4925  KMP_CPU_SET(proc, (kmp_affin_mask_t *)(*mask));
4926  return 0;
4927 }
4928 
4929 int __kmp_aux_unset_affinity_mask_proc(int proc, void **mask) {
4930  if (!KMP_AFFINITY_CAPABLE()) {
4931  return -1;
4932  }
4933 
4934  KA_TRACE(1000, (""); {
4935  int gtid = __kmp_entry_gtid();
4936  char buf[KMP_AFFIN_MASK_PRINT_LEN];
4937  __kmp_affinity_print_mask(buf, KMP_AFFIN_MASK_PRINT_LEN,
4938  (kmp_affin_mask_t *)(*mask));
4939  __kmp_debug_printf("kmp_unset_affinity_mask_proc: unsetting proc %d in "
4940  "affinity mask for thread %d = %s\n",
4941  proc, gtid, buf);
4942  });
4943 
4944  if (__kmp_env_consistency_check) {
4945  if ((mask == NULL) || (*mask == NULL)) {
4946  KMP_FATAL(AffinityInvalidMask, "kmp_unset_affinity_mask_proc");
4947  }
4948  }
4949 
4950  if ((proc < 0) || (proc >= __kmp_aux_get_affinity_max_proc())) {
4951  return -1;
4952  }
4953  if (!KMP_CPU_ISSET(proc, __kmp_affin_fullMask)) {
4954  return -2;
4955  }
4956 
4957  KMP_CPU_CLR(proc, (kmp_affin_mask_t *)(*mask));
4958  return 0;
4959 }
4960 
4961 int __kmp_aux_get_affinity_mask_proc(int proc, void **mask) {
4962  if (!KMP_AFFINITY_CAPABLE()) {
4963  return -1;
4964  }
4965 
4966  KA_TRACE(1000, (""); {
4967  int gtid = __kmp_entry_gtid();
4968  char buf[KMP_AFFIN_MASK_PRINT_LEN];
4969  __kmp_affinity_print_mask(buf, KMP_AFFIN_MASK_PRINT_LEN,
4970  (kmp_affin_mask_t *)(*mask));
4971  __kmp_debug_printf("kmp_get_affinity_mask_proc: getting proc %d in "
4972  "affinity mask for thread %d = %s\n",
4973  proc, gtid, buf);
4974  });
4975 
4976  if (__kmp_env_consistency_check) {
4977  if ((mask == NULL) || (*mask == NULL)) {
4978  KMP_FATAL(AffinityInvalidMask, "kmp_get_affinity_mask_proc");
4979  }
4980  }
4981 
4982  if ((proc < 0) || (proc >= __kmp_aux_get_affinity_max_proc())) {
4983  return -1;
4984  }
4985  if (!KMP_CPU_ISSET(proc, __kmp_affin_fullMask)) {
4986  return 0;
4987  }
4988 
4989  return KMP_CPU_ISSET(proc, (kmp_affin_mask_t *)(*mask));
4990 }
4991 
4992 // Dynamic affinity settings - Affinity balanced
4993 void __kmp_balanced_affinity(kmp_info_t *th, int nthreads) {
4994  KMP_DEBUG_ASSERT(th);
4995  bool fine_gran = true;
4996  int tid = th->th.th_info.ds.ds_tid;
4997 
4998  switch (__kmp_affinity_gran) {
4999  case affinity_gran_fine:
5000  case affinity_gran_thread:
5001  break;
5002  case affinity_gran_core:
5003  if (__kmp_nThreadsPerCore > 1) {
5004  fine_gran = false;
5005  }
5006  break;
5007  case affinity_gran_package:
5008  if (nCoresPerPkg > 1) {
5009  fine_gran = false;
5010  }
5011  break;
5012  default:
5013  fine_gran = false;
5014  }
5015 
5016  if (__kmp_affinity_uniform_topology()) {
5017  int coreID;
5018  int threadID;
5019  // Number of hyper threads per core in HT machine
5020  int __kmp_nth_per_core = __kmp_avail_proc / __kmp_ncores;
5021  // Number of cores
5022  int ncores = __kmp_ncores;
5023  if ((nPackages > 1) && (__kmp_nth_per_core <= 1)) {
5024  __kmp_nth_per_core = __kmp_avail_proc / nPackages;
5025  ncores = nPackages;
5026  }
5027  // How many threads will be bound to each core
5028  int chunk = nthreads / ncores;
5029  // How many cores will have an additional thread bound to it - "big cores"
5030  int big_cores = nthreads % ncores;
5031  // Number of threads on the big cores
5032  int big_nth = (chunk + 1) * big_cores;
5033  if (tid < big_nth) {
5034  coreID = tid / (chunk + 1);
5035  threadID = (tid % (chunk + 1)) % __kmp_nth_per_core;
5036  } else { // tid >= big_nth
5037  coreID = (tid - big_cores) / chunk;
5038  threadID = ((tid - big_cores) % chunk) % __kmp_nth_per_core;
5039  }
5040 
5041  KMP_DEBUG_ASSERT2(KMP_AFFINITY_CAPABLE(),
5042  "Illegal set affinity operation when not capable");
5043 
5044  kmp_affin_mask_t *mask = th->th.th_affin_mask;
5045  KMP_CPU_ZERO(mask);
5046 
5047  if (fine_gran) {
5048  int osID = address2os[coreID * __kmp_nth_per_core + threadID].second;
5049  KMP_CPU_SET(osID, mask);
5050  } else {
5051  for (int i = 0; i < __kmp_nth_per_core; i++) {
5052  int osID;
5053  osID = address2os[coreID * __kmp_nth_per_core + i].second;
5054  KMP_CPU_SET(osID, mask);
5055  }
5056  }
5057  if (__kmp_affinity_verbose) {
5058  char buf[KMP_AFFIN_MASK_PRINT_LEN];
5059  __kmp_affinity_print_mask(buf, KMP_AFFIN_MASK_PRINT_LEN, mask);
5060  KMP_INFORM(BoundToOSProcSet, "KMP_AFFINITY", (kmp_int32)getpid(),
5061  __kmp_gettid(), tid, buf);
5062  }
5063  __kmp_set_system_affinity(mask, TRUE);
5064  } else { // Non-uniform topology
5065 
5066  kmp_affin_mask_t *mask = th->th.th_affin_mask;
5067  KMP_CPU_ZERO(mask);
5068 
5069  int core_level = __kmp_affinity_find_core_level(
5070  address2os, __kmp_avail_proc, __kmp_aff_depth - 1);
5071  int ncores = __kmp_affinity_compute_ncores(address2os, __kmp_avail_proc,
5072  __kmp_aff_depth - 1, core_level);
5073  int nth_per_core = __kmp_affinity_max_proc_per_core(
5074  address2os, __kmp_avail_proc, __kmp_aff_depth - 1, core_level);
5075 
5076  // For performance gain consider the special case nthreads ==
5077  // __kmp_avail_proc
5078  if (nthreads == __kmp_avail_proc) {
5079  if (fine_gran) {
5080  int osID = address2os[tid].second;
5081  KMP_CPU_SET(osID, mask);
5082  } else {
5083  int core = __kmp_affinity_find_core(address2os, tid,
5084  __kmp_aff_depth - 1, core_level);
5085  for (int i = 0; i < __kmp_avail_proc; i++) {
5086  int osID = address2os[i].second;
5087  if (__kmp_affinity_find_core(address2os, i, __kmp_aff_depth - 1,
5088  core_level) == core) {
5089  KMP_CPU_SET(osID, mask);
5090  }
5091  }
5092  }
5093  } else if (nthreads <= ncores) {
5094 
5095  int core = 0;
5096  for (int i = 0; i < ncores; i++) {
5097  // Check if this core from procarr[] is in the mask
5098  int in_mask = 0;
5099  for (int j = 0; j < nth_per_core; j++) {
5100  if (procarr[i * nth_per_core + j] != -1) {
5101  in_mask = 1;
5102  break;
5103  }
5104  }
5105  if (in_mask) {
5106  if (tid == core) {
5107  for (int j = 0; j < nth_per_core; j++) {
5108  int osID = procarr[i * nth_per_core + j];
5109  if (osID != -1) {
5110  KMP_CPU_SET(osID, mask);
5111  // For fine granularity it is enough to set the first available
5112  // osID for this core
5113  if (fine_gran) {
5114  break;
5115  }
5116  }
5117  }
5118  break;
5119  } else {
5120  core++;
5121  }
5122  }
5123  }
5124  } else { // nthreads > ncores
5125  // Array to save the number of processors at each core
5126  int *nproc_at_core = (int *)KMP_ALLOCA(sizeof(int) * ncores);
5127  // Array to save the number of cores with "x" available processors;
5128  int *ncores_with_x_procs =
5129  (int *)KMP_ALLOCA(sizeof(int) * (nth_per_core + 1));
5130  // Array to save the number of cores with # procs from x to nth_per_core
5131  int *ncores_with_x_to_max_procs =
5132  (int *)KMP_ALLOCA(sizeof(int) * (nth_per_core + 1));
5133 
5134  for (int i = 0; i <= nth_per_core; i++) {
5135  ncores_with_x_procs[i] = 0;
5136  ncores_with_x_to_max_procs[i] = 0;
5137  }
5138 
5139  for (int i = 0; i < ncores; i++) {
5140  int cnt = 0;
5141  for (int j = 0; j < nth_per_core; j++) {
5142  if (procarr[i * nth_per_core + j] != -1) {
5143  cnt++;
5144  }
5145  }
5146  nproc_at_core[i] = cnt;
5147  ncores_with_x_procs[cnt]++;
5148  }
5149 
5150  for (int i = 0; i <= nth_per_core; i++) {
5151  for (int j = i; j <= nth_per_core; j++) {
5152  ncores_with_x_to_max_procs[i] += ncores_with_x_procs[j];
5153  }
5154  }
5155 
5156  // Max number of processors
5157  int nproc = nth_per_core * ncores;
5158  // An array to keep number of threads per each context
5159  int *newarr = (int *)__kmp_allocate(sizeof(int) * nproc);
5160  for (int i = 0; i < nproc; i++) {
5161  newarr[i] = 0;
5162  }
5163 
5164  int nth = nthreads;
5165  int flag = 0;
5166  while (nth > 0) {
5167  for (int j = 1; j <= nth_per_core; j++) {
5168  int cnt = ncores_with_x_to_max_procs[j];
5169  for (int i = 0; i < ncores; i++) {
5170  // Skip the core with 0 processors
5171  if (nproc_at_core[i] == 0) {
5172  continue;
5173  }
5174  for (int k = 0; k < nth_per_core; k++) {
5175  if (procarr[i * nth_per_core + k] != -1) {
5176  if (newarr[i * nth_per_core + k] == 0) {
5177  newarr[i * nth_per_core + k] = 1;
5178  cnt--;
5179  nth--;
5180  break;
5181  } else {
5182  if (flag != 0) {
5183  newarr[i * nth_per_core + k]++;
5184  cnt--;
5185  nth--;
5186  break;
5187  }
5188  }
5189  }
5190  }
5191  if (cnt == 0 || nth == 0) {
5192  break;
5193  }
5194  }
5195  if (nth == 0) {
5196  break;
5197  }
5198  }
5199  flag = 1;
5200  }
5201  int sum = 0;
5202  for (int i = 0; i < nproc; i++) {
5203  sum += newarr[i];
5204  if (sum > tid) {
5205  if (fine_gran) {
5206  int osID = procarr[i];
5207  KMP_CPU_SET(osID, mask);
5208  } else {
5209  int coreID = i / nth_per_core;
5210  for (int ii = 0; ii < nth_per_core; ii++) {
5211  int osID = procarr[coreID * nth_per_core + ii];
5212  if (osID != -1) {
5213  KMP_CPU_SET(osID, mask);
5214  }
5215  }
5216  }
5217  break;
5218  }
5219  }
5220  __kmp_free(newarr);
5221  }
5222 
5223  if (__kmp_affinity_verbose) {
5224  char buf[KMP_AFFIN_MASK_PRINT_LEN];
5225  __kmp_affinity_print_mask(buf, KMP_AFFIN_MASK_PRINT_LEN, mask);
5226  KMP_INFORM(BoundToOSProcSet, "KMP_AFFINITY", (kmp_int32)getpid(),
5227  __kmp_gettid(), tid, buf);
5228  }
5229  __kmp_set_system_affinity(mask, TRUE);
5230  }
5231 }
5232 
5233 #if KMP_OS_LINUX || KMP_OS_FREEBSD
5234 // We don't need this entry for Windows because
5235 // there is GetProcessAffinityMask() api
5236 //
5237 // The intended usage is indicated by these steps:
5238 // 1) The user gets the current affinity mask
5239 // 2) Then sets the affinity by calling this function
5240 // 3) Error check the return value
5241 // 4) Use non-OpenMP parallelization
5242 // 5) Reset the affinity to what was stored in step 1)
5243 #ifdef __cplusplus
5244 extern "C"
5245 #endif
5246  int
5247  kmp_set_thread_affinity_mask_initial()
5248 // the function returns 0 on success,
5249 // -1 if we cannot bind thread
5250 // >0 (errno) if an error happened during binding
5251 {
5252  int gtid = __kmp_get_gtid();
5253  if (gtid < 0) {
5254  // Do not touch non-omp threads
5255  KA_TRACE(30, ("kmp_set_thread_affinity_mask_initial: "
5256  "non-omp thread, returning\n"));
5257  return -1;
5258  }
5259  if (!KMP_AFFINITY_CAPABLE() || !__kmp_init_middle) {
5260  KA_TRACE(30, ("kmp_set_thread_affinity_mask_initial: "
5261  "affinity not initialized, returning\n"));
5262  return -1;
5263  }
5264  KA_TRACE(30, ("kmp_set_thread_affinity_mask_initial: "
5265  "set full mask for thread %d\n",
5266  gtid));
5267  KMP_DEBUG_ASSERT(__kmp_affin_fullMask != NULL);
5268  return __kmp_set_system_affinity(__kmp_affin_fullMask, FALSE);
5269 }
5270 #endif
5271 
5272 #endif // KMP_AFFINITY_SUPPORTED