LLVM OpenMP* Runtime Library
kmp_alloc.cpp
1 /*
2  * kmp_alloc.cpp -- private/shared dynamic memory allocation and management
3  */
4 
5 //===----------------------------------------------------------------------===//
6 //
7 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
8 // See https://llvm.org/LICENSE.txt for license information.
9 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "kmp.h"
14 #include "kmp_io.h"
15 #include "kmp_wrapper_malloc.h"
16 
17 // Disable bget when it is not used
18 #if KMP_USE_BGET
19 
20 /* Thread private buffer management code */
21 
22 typedef int (*bget_compact_t)(size_t, int);
23 typedef void *(*bget_acquire_t)(size_t);
24 typedef void (*bget_release_t)(void *);
25 
26 /* NOTE: bufsize must be a signed datatype */
27 
28 #if KMP_OS_WINDOWS
29 #if KMP_ARCH_X86 || KMP_ARCH_ARM
30 typedef kmp_int32 bufsize;
31 #else
32 typedef kmp_int64 bufsize;
33 #endif
34 #else
35 typedef ssize_t bufsize;
36 #endif // KMP_OS_WINDOWS
37 
38 /* The three modes of operation are, fifo search, lifo search, and best-fit */
39 
40 typedef enum bget_mode {
41  bget_mode_fifo = 0,
42  bget_mode_lifo = 1,
43  bget_mode_best = 2
44 } bget_mode_t;
45 
46 static void bpool(kmp_info_t *th, void *buffer, bufsize len);
47 static void *bget(kmp_info_t *th, bufsize size);
48 static void *bgetz(kmp_info_t *th, bufsize size);
49 static void *bgetr(kmp_info_t *th, void *buffer, bufsize newsize);
50 static void brel(kmp_info_t *th, void *buf);
51 static void bectl(kmp_info_t *th, bget_compact_t compact,
52  bget_acquire_t acquire, bget_release_t release,
53  bufsize pool_incr);
54 
55 /* BGET CONFIGURATION */
56 /* Buffer allocation size quantum: all buffers allocated are a
57  multiple of this size. This MUST be a power of two. */
58 
59 /* On IA-32 architecture with Linux* OS, malloc() does not
60  ensure 16 byte alignment */
61 
62 #if KMP_ARCH_X86 || !KMP_HAVE_QUAD
63 
64 #define SizeQuant 8
65 #define AlignType double
66 
67 #else
68 
69 #define SizeQuant 16
70 #define AlignType _Quad
71 
72 #endif
73 
74 // Define this symbol to enable the bstats() function which calculates the
75 // total free space in the buffer pool, the largest available buffer, and the
76 // total space currently allocated.
77 #define BufStats 1
78 
79 #ifdef KMP_DEBUG
80 
81 // Define this symbol to enable the bpoold() function which dumps the buffers
82 // in a buffer pool.
83 #define BufDump 1
84 
85 // Define this symbol to enable the bpoolv() function for validating a buffer
86 // pool.
87 #define BufValid 1
88 
89 // Define this symbol to enable the bufdump() function which allows dumping the
90 // contents of an allocated or free buffer.
91 #define DumpData 1
92 
93 #ifdef NOT_USED_NOW
94 
95 // Wipe free buffers to a guaranteed pattern of garbage to trip up miscreants
96 // who attempt to use pointers into released buffers.
97 #define FreeWipe 1
98 
99 // Use a best fit algorithm when searching for space for an allocation request.
100 // This uses memory more efficiently, but allocation will be much slower.
101 #define BestFit 1
102 
103 #endif /* NOT_USED_NOW */
104 #endif /* KMP_DEBUG */
105 
106 static bufsize bget_bin_size[] = {
107  0,
108  // 1 << 6, /* .5 Cache line */
109  1 << 7, /* 1 Cache line, new */
110  1 << 8, /* 2 Cache lines */
111  1 << 9, /* 4 Cache lines, new */
112  1 << 10, /* 8 Cache lines */
113  1 << 11, /* 16 Cache lines, new */
114  1 << 12, 1 << 13, /* new */
115  1 << 14, 1 << 15, /* new */
116  1 << 16, 1 << 17, 1 << 18, 1 << 19, 1 << 20, /* 1MB */
117  1 << 21, /* 2MB */
118  1 << 22, /* 4MB */
119  1 << 23, /* 8MB */
120  1 << 24, /* 16MB */
121  1 << 25, /* 32MB */
122 };
123 
124 #define MAX_BGET_BINS (int)(sizeof(bget_bin_size) / sizeof(bufsize))
125 
126 struct bfhead;
127 
128 // Declare the interface, including the requested buffer size type, bufsize.
129 
130 /* Queue links */
131 typedef struct qlinks {
132  struct bfhead *flink; /* Forward link */
133  struct bfhead *blink; /* Backward link */
134 } qlinks_t;
135 
136 /* Header in allocated and free buffers */
137 typedef struct bhead2 {
138  kmp_info_t *bthr; /* The thread which owns the buffer pool */
139  bufsize prevfree; /* Relative link back to previous free buffer in memory or
140  0 if previous buffer is allocated. */
141  bufsize bsize; /* Buffer size: positive if free, negative if allocated. */
142 } bhead2_t;
143 
144 /* Make sure the bhead structure is a multiple of SizeQuant in size. */
145 typedef union bhead {
146  KMP_ALIGN(SizeQuant)
147  AlignType b_align;
148  char b_pad[sizeof(bhead2_t) + (SizeQuant - (sizeof(bhead2_t) % SizeQuant))];
149  bhead2_t bb;
150 } bhead_t;
151 #define BH(p) ((bhead_t *)(p))
152 
153 /* Header in directly allocated buffers (by acqfcn) */
154 typedef struct bdhead {
155  bufsize tsize; /* Total size, including overhead */
156  bhead_t bh; /* Common header */
157 } bdhead_t;
158 #define BDH(p) ((bdhead_t *)(p))
159 
160 /* Header in free buffers */
161 typedef struct bfhead {
162  bhead_t bh; /* Common allocated/free header */
163  qlinks_t ql; /* Links on free list */
164 } bfhead_t;
165 #define BFH(p) ((bfhead_t *)(p))
166 
167 typedef struct thr_data {
168  bfhead_t freelist[MAX_BGET_BINS];
169 #if BufStats
170  size_t totalloc; /* Total space currently allocated */
171  long numget, numrel; /* Number of bget() and brel() calls */
172  long numpblk; /* Number of pool blocks */
173  long numpget, numprel; /* Number of block gets and rels */
174  long numdget, numdrel; /* Number of direct gets and rels */
175 #endif /* BufStats */
176 
177  /* Automatic expansion block management functions */
178  bget_compact_t compfcn;
179  bget_acquire_t acqfcn;
180  bget_release_t relfcn;
181 
182  bget_mode_t mode; /* what allocation mode to use? */
183 
184  bufsize exp_incr; /* Expansion block size */
185  bufsize pool_len; /* 0: no bpool calls have been made
186  -1: not all pool blocks are the same size
187  >0: (common) block size for all bpool calls made so far
188  */
189  bfhead_t *last_pool; /* Last pool owned by this thread (delay deallocation) */
190 } thr_data_t;
191 
192 /* Minimum allocation quantum: */
193 #define QLSize (sizeof(qlinks_t))
194 #define SizeQ ((SizeQuant > QLSize) ? SizeQuant : QLSize)
195 #define MaxSize \
196  (bufsize)( \
197  ~(((bufsize)(1) << (sizeof(bufsize) * CHAR_BIT - 1)) | (SizeQuant - 1)))
198 // Maximum for the requested size.
199 
200 /* End sentinel: value placed in bsize field of dummy block delimiting
201  end of pool block. The most negative number which will fit in a
202  bufsize, defined in a way that the compiler will accept. */
203 
204 #define ESent \
205  ((bufsize)(-(((((bufsize)1) << ((int)sizeof(bufsize) * 8 - 2)) - 1) * 2) - 2))
206 
207 /* Thread Data management routines */
208 static int bget_get_bin(bufsize size) {
209  // binary chop bins
210  int lo = 0, hi = MAX_BGET_BINS - 1;
211 
212  KMP_DEBUG_ASSERT(size > 0);
213 
214  while ((hi - lo) > 1) {
215  int mid = (lo + hi) >> 1;
216  if (size < bget_bin_size[mid])
217  hi = mid - 1;
218  else
219  lo = mid;
220  }
221 
222  KMP_DEBUG_ASSERT((lo >= 0) && (lo < MAX_BGET_BINS));
223 
224  return lo;
225 }
226 
227 static void set_thr_data(kmp_info_t *th) {
228  int i;
229  thr_data_t *data;
230 
231  data = (thr_data_t *)((!th->th.th_local.bget_data)
232  ? __kmp_allocate(sizeof(*data))
233  : th->th.th_local.bget_data);
234 
235  memset(data, '\0', sizeof(*data));
236 
237  for (i = 0; i < MAX_BGET_BINS; ++i) {
238  data->freelist[i].ql.flink = &data->freelist[i];
239  data->freelist[i].ql.blink = &data->freelist[i];
240  }
241 
242  th->th.th_local.bget_data = data;
243  th->th.th_local.bget_list = 0;
244 #if !USE_CMP_XCHG_FOR_BGET
245 #ifdef USE_QUEUING_LOCK_FOR_BGET
246  __kmp_init_lock(&th->th.th_local.bget_lock);
247 #else
248  __kmp_init_bootstrap_lock(&th->th.th_local.bget_lock);
249 #endif /* USE_LOCK_FOR_BGET */
250 #endif /* ! USE_CMP_XCHG_FOR_BGET */
251 }
252 
253 static thr_data_t *get_thr_data(kmp_info_t *th) {
254  thr_data_t *data;
255 
256  data = (thr_data_t *)th->th.th_local.bget_data;
257 
258  KMP_DEBUG_ASSERT(data != 0);
259 
260  return data;
261 }
262 
263 /* Walk the free list and release the enqueued buffers */
264 static void __kmp_bget_dequeue(kmp_info_t *th) {
265  void *p = TCR_SYNC_PTR(th->th.th_local.bget_list);
266 
267  if (p != 0) {
268 #if USE_CMP_XCHG_FOR_BGET
269  {
270  volatile void *old_value = TCR_SYNC_PTR(th->th.th_local.bget_list);
271  while (!KMP_COMPARE_AND_STORE_PTR(&th->th.th_local.bget_list,
272  CCAST(void *, old_value), nullptr)) {
273  KMP_CPU_PAUSE();
274  old_value = TCR_SYNC_PTR(th->th.th_local.bget_list);
275  }
276  p = CCAST(void *, old_value);
277  }
278 #else /* ! USE_CMP_XCHG_FOR_BGET */
279 #ifdef USE_QUEUING_LOCK_FOR_BGET
280  __kmp_acquire_lock(&th->th.th_local.bget_lock, __kmp_gtid_from_thread(th));
281 #else
282  __kmp_acquire_bootstrap_lock(&th->th.th_local.bget_lock);
283 #endif /* USE_QUEUING_LOCK_FOR_BGET */
284 
285  p = (void *)th->th.th_local.bget_list;
286  th->th.th_local.bget_list = 0;
287 
288 #ifdef USE_QUEUING_LOCK_FOR_BGET
289  __kmp_release_lock(&th->th.th_local.bget_lock, __kmp_gtid_from_thread(th));
290 #else
291  __kmp_release_bootstrap_lock(&th->th.th_local.bget_lock);
292 #endif
293 #endif /* USE_CMP_XCHG_FOR_BGET */
294 
295  /* Check again to make sure the list is not empty */
296  while (p != 0) {
297  void *buf = p;
298  bfhead_t *b = BFH(((char *)p) - sizeof(bhead_t));
299 
300  KMP_DEBUG_ASSERT(b->bh.bb.bsize != 0);
301  KMP_DEBUG_ASSERT(((kmp_uintptr_t)TCR_PTR(b->bh.bb.bthr) & ~1) ==
302  (kmp_uintptr_t)th); // clear possible mark
303  KMP_DEBUG_ASSERT(b->ql.blink == 0);
304 
305  p = (void *)b->ql.flink;
306 
307  brel(th, buf);
308  }
309  }
310 }
311 
312 /* Chain together the free buffers by using the thread owner field */
313 static void __kmp_bget_enqueue(kmp_info_t *th, void *buf
314 #ifdef USE_QUEUING_LOCK_FOR_BGET
315  ,
316  kmp_int32 rel_gtid
317 #endif
318 ) {
319  bfhead_t *b = BFH(((char *)buf) - sizeof(bhead_t));
320 
321  KMP_DEBUG_ASSERT(b->bh.bb.bsize != 0);
322  KMP_DEBUG_ASSERT(((kmp_uintptr_t)TCR_PTR(b->bh.bb.bthr) & ~1) ==
323  (kmp_uintptr_t)th); // clear possible mark
324 
325  b->ql.blink = 0;
326 
327  KC_TRACE(10, ("__kmp_bget_enqueue: moving buffer to T#%d list\n",
328  __kmp_gtid_from_thread(th)));
329 
330 #if USE_CMP_XCHG_FOR_BGET
331  {
332  volatile void *old_value = TCR_PTR(th->th.th_local.bget_list);
333  /* the next pointer must be set before setting bget_list to buf to avoid
334  exposing a broken list to other threads, even for an instant. */
335  b->ql.flink = BFH(CCAST(void *, old_value));
336 
337  while (!KMP_COMPARE_AND_STORE_PTR(&th->th.th_local.bget_list,
338  CCAST(void *, old_value), buf)) {
339  KMP_CPU_PAUSE();
340  old_value = TCR_PTR(th->th.th_local.bget_list);
341  /* the next pointer must be set before setting bget_list to buf to avoid
342  exposing a broken list to other threads, even for an instant. */
343  b->ql.flink = BFH(CCAST(void *, old_value));
344  }
345  }
346 #else /* ! USE_CMP_XCHG_FOR_BGET */
347 #ifdef USE_QUEUING_LOCK_FOR_BGET
348  __kmp_acquire_lock(&th->th.th_local.bget_lock, rel_gtid);
349 #else
350  __kmp_acquire_bootstrap_lock(&th->th.th_local.bget_lock);
351 #endif
352 
353  b->ql.flink = BFH(th->th.th_local.bget_list);
354  th->th.th_local.bget_list = (void *)buf;
355 
356 #ifdef USE_QUEUING_LOCK_FOR_BGET
357  __kmp_release_lock(&th->th.th_local.bget_lock, rel_gtid);
358 #else
359  __kmp_release_bootstrap_lock(&th->th.th_local.bget_lock);
360 #endif
361 #endif /* USE_CMP_XCHG_FOR_BGET */
362 }
363 
364 /* insert buffer back onto a new freelist */
365 static void __kmp_bget_insert_into_freelist(thr_data_t *thr, bfhead_t *b) {
366  int bin;
367 
368  KMP_DEBUG_ASSERT(((size_t)b) % SizeQuant == 0);
369  KMP_DEBUG_ASSERT(b->bh.bb.bsize % SizeQuant == 0);
370 
371  bin = bget_get_bin(b->bh.bb.bsize);
372 
373  KMP_DEBUG_ASSERT(thr->freelist[bin].ql.blink->ql.flink ==
374  &thr->freelist[bin]);
375  KMP_DEBUG_ASSERT(thr->freelist[bin].ql.flink->ql.blink ==
376  &thr->freelist[bin]);
377 
378  b->ql.flink = &thr->freelist[bin];
379  b->ql.blink = thr->freelist[bin].ql.blink;
380 
381  thr->freelist[bin].ql.blink = b;
382  b->ql.blink->ql.flink = b;
383 }
384 
385 /* unlink the buffer from the old freelist */
386 static void __kmp_bget_remove_from_freelist(bfhead_t *b) {
387  KMP_DEBUG_ASSERT(b->ql.blink->ql.flink == b);
388  KMP_DEBUG_ASSERT(b->ql.flink->ql.blink == b);
389 
390  b->ql.blink->ql.flink = b->ql.flink;
391  b->ql.flink->ql.blink = b->ql.blink;
392 }
393 
394 /* GET STATS -- check info on free list */
395 static void bcheck(kmp_info_t *th, bufsize *max_free, bufsize *total_free) {
396  thr_data_t *thr = get_thr_data(th);
397  int bin;
398 
399  *total_free = *max_free = 0;
400 
401  for (bin = 0; bin < MAX_BGET_BINS; ++bin) {
402  bfhead_t *b, *best;
403 
404  best = &thr->freelist[bin];
405  b = best->ql.flink;
406 
407  while (b != &thr->freelist[bin]) {
408  *total_free += (b->bh.bb.bsize - sizeof(bhead_t));
409  if ((best == &thr->freelist[bin]) || (b->bh.bb.bsize < best->bh.bb.bsize))
410  best = b;
411 
412  /* Link to next buffer */
413  b = b->ql.flink;
414  }
415 
416  if (*max_free < best->bh.bb.bsize)
417  *max_free = best->bh.bb.bsize;
418  }
419 
420  if (*max_free > (bufsize)sizeof(bhead_t))
421  *max_free -= sizeof(bhead_t);
422 }
423 
424 /* BGET -- Allocate a buffer. */
425 static void *bget(kmp_info_t *th, bufsize requested_size) {
426  thr_data_t *thr = get_thr_data(th);
427  bufsize size = requested_size;
428  bfhead_t *b;
429  void *buf;
430  int compactseq = 0;
431  int use_blink = 0;
432  /* For BestFit */
433  bfhead_t *best;
434 
435  if (size < 0 || size + sizeof(bhead_t) > MaxSize) {
436  return NULL;
437  }
438 
439  __kmp_bget_dequeue(th); /* Release any queued buffers */
440 
441  if (size < (bufsize)SizeQ) { // Need at least room for the queue links.
442  size = SizeQ;
443  }
444 #if defined(SizeQuant) && (SizeQuant > 1)
445  size = (size + (SizeQuant - 1)) & (~(SizeQuant - 1));
446 #endif
447 
448  size += sizeof(bhead_t); // Add overhead in allocated buffer to size required.
449  KMP_DEBUG_ASSERT(size >= 0);
450  KMP_DEBUG_ASSERT(size % SizeQuant == 0);
451 
452  use_blink = (thr->mode == bget_mode_lifo);
453 
454  /* If a compact function was provided in the call to bectl(), wrap
455  a loop around the allocation process to allow compaction to
456  intervene in case we don't find a suitable buffer in the chain. */
457 
458  for (;;) {
459  int bin;
460 
461  for (bin = bget_get_bin(size); bin < MAX_BGET_BINS; ++bin) {
462  /* Link to next buffer */
463  b = (use_blink ? thr->freelist[bin].ql.blink
464  : thr->freelist[bin].ql.flink);
465 
466  if (thr->mode == bget_mode_best) {
467  best = &thr->freelist[bin];
468 
469  /* Scan the free list searching for the first buffer big enough
470  to hold the requested size buffer. */
471  while (b != &thr->freelist[bin]) {
472  if (b->bh.bb.bsize >= (bufsize)size) {
473  if ((best == &thr->freelist[bin]) ||
474  (b->bh.bb.bsize < best->bh.bb.bsize)) {
475  best = b;
476  }
477  }
478 
479  /* Link to next buffer */
480  b = (use_blink ? b->ql.blink : b->ql.flink);
481  }
482  b = best;
483  }
484 
485  while (b != &thr->freelist[bin]) {
486  if ((bufsize)b->bh.bb.bsize >= (bufsize)size) {
487 
488  // Buffer is big enough to satisfy the request. Allocate it to the
489  // caller. We must decide whether the buffer is large enough to split
490  // into the part given to the caller and a free buffer that remains
491  // on the free list, or whether the entire buffer should be removed
492  // from the free list and given to the caller in its entirety. We
493  // only split the buffer if enough room remains for a header plus the
494  // minimum quantum of allocation.
495  if ((b->bh.bb.bsize - (bufsize)size) >
496  (bufsize)(SizeQ + (sizeof(bhead_t)))) {
497  bhead_t *ba, *bn;
498 
499  ba = BH(((char *)b) + (b->bh.bb.bsize - (bufsize)size));
500  bn = BH(((char *)ba) + size);
501 
502  KMP_DEBUG_ASSERT(bn->bb.prevfree == b->bh.bb.bsize);
503 
504  /* Subtract size from length of free block. */
505  b->bh.bb.bsize -= (bufsize)size;
506 
507  /* Link allocated buffer to the previous free buffer. */
508  ba->bb.prevfree = b->bh.bb.bsize;
509 
510  /* Plug negative size into user buffer. */
511  ba->bb.bsize = -size;
512 
513  /* Mark this buffer as owned by this thread. */
514  TCW_PTR(ba->bb.bthr,
515  th); // not an allocated address (do not mark it)
516  /* Mark buffer after this one not preceded by free block. */
517  bn->bb.prevfree = 0;
518 
519  // unlink buffer from old freelist, and reinsert into new freelist
520  __kmp_bget_remove_from_freelist(b);
521  __kmp_bget_insert_into_freelist(thr, b);
522 #if BufStats
523  thr->totalloc += (size_t)size;
524  thr->numget++; /* Increment number of bget() calls */
525 #endif
526  buf = (void *)((((char *)ba) + sizeof(bhead_t)));
527  KMP_DEBUG_ASSERT(((size_t)buf) % SizeQuant == 0);
528  return buf;
529  } else {
530  bhead_t *ba;
531 
532  ba = BH(((char *)b) + b->bh.bb.bsize);
533 
534  KMP_DEBUG_ASSERT(ba->bb.prevfree == b->bh.bb.bsize);
535 
536  /* The buffer isn't big enough to split. Give the whole
537  shebang to the caller and remove it from the free list. */
538 
539  __kmp_bget_remove_from_freelist(b);
540 #if BufStats
541  thr->totalloc += (size_t)b->bh.bb.bsize;
542  thr->numget++; /* Increment number of bget() calls */
543 #endif
544  /* Negate size to mark buffer allocated. */
545  b->bh.bb.bsize = -(b->bh.bb.bsize);
546 
547  /* Mark this buffer as owned by this thread. */
548  TCW_PTR(ba->bb.bthr, th); // not an allocated address (do not mark)
549  /* Zero the back pointer in the next buffer in memory
550  to indicate that this buffer is allocated. */
551  ba->bb.prevfree = 0;
552 
553  /* Give user buffer starting at queue links. */
554  buf = (void *)&(b->ql);
555  KMP_DEBUG_ASSERT(((size_t)buf) % SizeQuant == 0);
556  return buf;
557  }
558  }
559 
560  /* Link to next buffer */
561  b = (use_blink ? b->ql.blink : b->ql.flink);
562  }
563  }
564 
565  /* We failed to find a buffer. If there's a compact function defined,
566  notify it of the size requested. If it returns TRUE, try the allocation
567  again. */
568 
569  if ((thr->compfcn == 0) || (!(*thr->compfcn)(size, ++compactseq))) {
570  break;
571  }
572  }
573 
574  /* No buffer available with requested size free. */
575 
576  /* Don't give up yet -- look in the reserve supply. */
577  if (thr->acqfcn != 0) {
578  if (size > (bufsize)(thr->exp_incr - sizeof(bhead_t))) {
579  /* Request is too large to fit in a single expansion block.
580  Try to satisfy it by a direct buffer acquisition. */
581  bdhead_t *bdh;
582 
583  size += sizeof(bdhead_t) - sizeof(bhead_t);
584 
585  KE_TRACE(10, ("%%%%%% MALLOC( %d )\n", (int)size));
586 
587  /* richryan */
588  bdh = BDH((*thr->acqfcn)((bufsize)size));
589  if (bdh != NULL) {
590 
591  // Mark the buffer special by setting size field of its header to zero.
592  bdh->bh.bb.bsize = 0;
593 
594  /* Mark this buffer as owned by this thread. */
595  TCW_PTR(bdh->bh.bb.bthr, th); // don't mark buffer as allocated,
596  // because direct buffer never goes to free list
597  bdh->bh.bb.prevfree = 0;
598  bdh->tsize = size;
599 #if BufStats
600  thr->totalloc += (size_t)size;
601  thr->numget++; /* Increment number of bget() calls */
602  thr->numdget++; /* Direct bget() call count */
603 #endif
604  buf = (void *)(bdh + 1);
605  KMP_DEBUG_ASSERT(((size_t)buf) % SizeQuant == 0);
606  return buf;
607  }
608 
609  } else {
610 
611  /* Try to obtain a new expansion block */
612  void *newpool;
613 
614  KE_TRACE(10, ("%%%%%% MALLOCB( %d )\n", (int)thr->exp_incr));
615 
616  /* richryan */
617  newpool = (*thr->acqfcn)((bufsize)thr->exp_incr);
618  KMP_DEBUG_ASSERT(((size_t)newpool) % SizeQuant == 0);
619  if (newpool != NULL) {
620  bpool(th, newpool, thr->exp_incr);
621  buf = bget(
622  th, requested_size); /* This can't, I say, can't get into a loop. */
623  return buf;
624  }
625  }
626  }
627 
628  /* Still no buffer available */
629 
630  return NULL;
631 }
632 
633 /* BGETZ -- Allocate a buffer and clear its contents to zero. We clear
634  the entire contents of the buffer to zero, not just the
635  region requested by the caller. */
636 
637 static void *bgetz(kmp_info_t *th, bufsize size) {
638  char *buf = (char *)bget(th, size);
639 
640  if (buf != NULL) {
641  bhead_t *b;
642  bufsize rsize;
643 
644  b = BH(buf - sizeof(bhead_t));
645  rsize = -(b->bb.bsize);
646  if (rsize == 0) {
647  bdhead_t *bd;
648 
649  bd = BDH(buf - sizeof(bdhead_t));
650  rsize = bd->tsize - (bufsize)sizeof(bdhead_t);
651  } else {
652  rsize -= sizeof(bhead_t);
653  }
654 
655  KMP_DEBUG_ASSERT(rsize >= size);
656 
657  (void)memset(buf, 0, (bufsize)rsize);
658  }
659  return ((void *)buf);
660 }
661 
662 /* BGETR -- Reallocate a buffer. This is a minimal implementation,
663  simply in terms of brel() and bget(). It could be
664  enhanced to allow the buffer to grow into adjacent free
665  blocks and to avoid moving data unnecessarily. */
666 
667 static void *bgetr(kmp_info_t *th, void *buf, bufsize size) {
668  void *nbuf;
669  bufsize osize; /* Old size of buffer */
670  bhead_t *b;
671 
672  nbuf = bget(th, size);
673  if (nbuf == NULL) { /* Acquire new buffer */
674  return NULL;
675  }
676  if (buf == NULL) {
677  return nbuf;
678  }
679  b = BH(((char *)buf) - sizeof(bhead_t));
680  osize = -b->bb.bsize;
681  if (osize == 0) {
682  /* Buffer acquired directly through acqfcn. */
683  bdhead_t *bd;
684 
685  bd = BDH(((char *)buf) - sizeof(bdhead_t));
686  osize = bd->tsize - (bufsize)sizeof(bdhead_t);
687  } else {
688  osize -= sizeof(bhead_t);
689  }
690 
691  KMP_DEBUG_ASSERT(osize > 0);
692 
693  (void)KMP_MEMCPY((char *)nbuf, (char *)buf, /* Copy the data */
694  (size_t)((size < osize) ? size : osize));
695  brel(th, buf);
696 
697  return nbuf;
698 }
699 
700 /* BREL -- Release a buffer. */
701 static void brel(kmp_info_t *th, void *buf) {
702  thr_data_t *thr = get_thr_data(th);
703  bfhead_t *b, *bn;
704  kmp_info_t *bth;
705 
706  KMP_DEBUG_ASSERT(buf != NULL);
707  KMP_DEBUG_ASSERT(((size_t)buf) % SizeQuant == 0);
708 
709  b = BFH(((char *)buf) - sizeof(bhead_t));
710 
711  if (b->bh.bb.bsize == 0) { /* Directly-acquired buffer? */
712  bdhead_t *bdh;
713 
714  bdh = BDH(((char *)buf) - sizeof(bdhead_t));
715  KMP_DEBUG_ASSERT(b->bh.bb.prevfree == 0);
716 #if BufStats
717  thr->totalloc -= (size_t)bdh->tsize;
718  thr->numdrel++; /* Number of direct releases */
719  thr->numrel++; /* Increment number of brel() calls */
720 #endif /* BufStats */
721 #ifdef FreeWipe
722  (void)memset((char *)buf, 0x55, (size_t)(bdh->tsize - sizeof(bdhead_t)));
723 #endif /* FreeWipe */
724 
725  KE_TRACE(10, ("%%%%%% FREE( %p )\n", (void *)bdh));
726 
727  KMP_DEBUG_ASSERT(thr->relfcn != 0);
728  (*thr->relfcn)((void *)bdh); /* Release it directly. */
729  return;
730  }
731 
732  bth = (kmp_info_t *)((kmp_uintptr_t)TCR_PTR(b->bh.bb.bthr) &
733  ~1); // clear possible mark before comparison
734  if (bth != th) {
735  /* Add this buffer to be released by the owning thread later */
736  __kmp_bget_enqueue(bth, buf
737 #ifdef USE_QUEUING_LOCK_FOR_BGET
738  ,
739  __kmp_gtid_from_thread(th)
740 #endif
741  );
742  return;
743  }
744 
745  /* Buffer size must be negative, indicating that the buffer is allocated. */
746  if (b->bh.bb.bsize >= 0) {
747  bn = NULL;
748  }
749  KMP_DEBUG_ASSERT(b->bh.bb.bsize < 0);
750 
751  /* Back pointer in next buffer must be zero, indicating the same thing: */
752 
753  KMP_DEBUG_ASSERT(BH((char *)b - b->bh.bb.bsize)->bb.prevfree == 0);
754 
755 #if BufStats
756  thr->numrel++; /* Increment number of brel() calls */
757  thr->totalloc += (size_t)b->bh.bb.bsize;
758 #endif
759 
760  /* If the back link is nonzero, the previous buffer is free. */
761 
762  if (b->bh.bb.prevfree != 0) {
763  /* The previous buffer is free. Consolidate this buffer with it by adding
764  the length of this buffer to the previous free buffer. Note that we
765  subtract the size in the buffer being released, since it's negative to
766  indicate that the buffer is allocated. */
767  bufsize size = b->bh.bb.bsize;
768 
769  /* Make the previous buffer the one we're working on. */
770  KMP_DEBUG_ASSERT(BH((char *)b - b->bh.bb.prevfree)->bb.bsize ==
771  b->bh.bb.prevfree);
772  b = BFH(((char *)b) - b->bh.bb.prevfree);
773  b->bh.bb.bsize -= size;
774 
775  /* unlink the buffer from the old freelist */
776  __kmp_bget_remove_from_freelist(b);
777  } else {
778  /* The previous buffer isn't allocated. Mark this buffer size as positive
779  (i.e. free) and fall through to place the buffer on the free list as an
780  isolated free block. */
781  b->bh.bb.bsize = -b->bh.bb.bsize;
782  }
783 
784  /* insert buffer back onto a new freelist */
785  __kmp_bget_insert_into_freelist(thr, b);
786 
787  /* Now we look at the next buffer in memory, located by advancing from
788  the start of this buffer by its size, to see if that buffer is
789  free. If it is, we combine this buffer with the next one in
790  memory, dechaining the second buffer from the free list. */
791  bn = BFH(((char *)b) + b->bh.bb.bsize);
792  if (bn->bh.bb.bsize > 0) {
793 
794  /* The buffer is free. Remove it from the free list and add
795  its size to that of our buffer. */
796  KMP_DEBUG_ASSERT(BH((char *)bn + bn->bh.bb.bsize)->bb.prevfree ==
797  bn->bh.bb.bsize);
798 
799  __kmp_bget_remove_from_freelist(bn);
800 
801  b->bh.bb.bsize += bn->bh.bb.bsize;
802 
803  /* unlink the buffer from the old freelist, and reinsert it into the new
804  * freelist */
805  __kmp_bget_remove_from_freelist(b);
806  __kmp_bget_insert_into_freelist(thr, b);
807 
808  /* Finally, advance to the buffer that follows the newly
809  consolidated free block. We must set its backpointer to the
810  head of the consolidated free block. We know the next block
811  must be an allocated block because the process of recombination
812  guarantees that two free blocks will never be contiguous in
813  memory. */
814  bn = BFH(((char *)b) + b->bh.bb.bsize);
815  }
816 #ifdef FreeWipe
817  (void)memset(((char *)b) + sizeof(bfhead_t), 0x55,
818  (size_t)(b->bh.bb.bsize - sizeof(bfhead_t)));
819 #endif
820  KMP_DEBUG_ASSERT(bn->bh.bb.bsize < 0);
821 
822  /* The next buffer is allocated. Set the backpointer in it to point
823  to this buffer; the previous free buffer in memory. */
824 
825  bn->bh.bb.prevfree = b->bh.bb.bsize;
826 
827  /* If a block-release function is defined, and this free buffer
828  constitutes the entire block, release it. Note that pool_len
829  is defined in such a way that the test will fail unless all
830  pool blocks are the same size. */
831  if (thr->relfcn != 0 &&
832  b->bh.bb.bsize == (bufsize)(thr->pool_len - sizeof(bhead_t))) {
833 #if BufStats
834  if (thr->numpblk !=
835  1) { /* Do not release the last buffer until finalization time */
836 #endif
837 
838  KMP_DEBUG_ASSERT(b->bh.bb.prevfree == 0);
839  KMP_DEBUG_ASSERT(BH((char *)b + b->bh.bb.bsize)->bb.bsize == ESent);
840  KMP_DEBUG_ASSERT(BH((char *)b + b->bh.bb.bsize)->bb.prevfree ==
841  b->bh.bb.bsize);
842 
843  /* Unlink the buffer from the free list */
844  __kmp_bget_remove_from_freelist(b);
845 
846  KE_TRACE(10, ("%%%%%% FREE( %p )\n", (void *)b));
847 
848  (*thr->relfcn)(b);
849 #if BufStats
850  thr->numprel++; /* Nr of expansion block releases */
851  thr->numpblk--; /* Total number of blocks */
852  KMP_DEBUG_ASSERT(thr->numpblk == thr->numpget - thr->numprel);
853 
854  // avoid leaving stale last_pool pointer around if it is being dealloced
855  if (thr->last_pool == b)
856  thr->last_pool = 0;
857  } else {
858  thr->last_pool = b;
859  }
860 #endif /* BufStats */
861  }
862 }
863 
864 /* BECTL -- Establish automatic pool expansion control */
865 static void bectl(kmp_info_t *th, bget_compact_t compact,
866  bget_acquire_t acquire, bget_release_t release,
867  bufsize pool_incr) {
868  thr_data_t *thr = get_thr_data(th);
869 
870  thr->compfcn = compact;
871  thr->acqfcn = acquire;
872  thr->relfcn = release;
873  thr->exp_incr = pool_incr;
874 }
875 
876 /* BPOOL -- Add a region of memory to the buffer pool. */
877 static void bpool(kmp_info_t *th, void *buf, bufsize len) {
878  /* int bin = 0; */
879  thr_data_t *thr = get_thr_data(th);
880  bfhead_t *b = BFH(buf);
881  bhead_t *bn;
882 
883  __kmp_bget_dequeue(th); /* Release any queued buffers */
884 
885 #ifdef SizeQuant
886  len &= ~((bufsize)(SizeQuant - 1));
887 #endif
888  if (thr->pool_len == 0) {
889  thr->pool_len = len;
890  } else if (len != thr->pool_len) {
891  thr->pool_len = -1;
892  }
893 #if BufStats
894  thr->numpget++; /* Number of block acquisitions */
895  thr->numpblk++; /* Number of blocks total */
896  KMP_DEBUG_ASSERT(thr->numpblk == thr->numpget - thr->numprel);
897 #endif /* BufStats */
898 
899  /* Since the block is initially occupied by a single free buffer,
900  it had better not be (much) larger than the largest buffer
901  whose size we can store in bhead.bb.bsize. */
902  KMP_DEBUG_ASSERT(len - sizeof(bhead_t) <= -((bufsize)ESent + 1));
903 
904  /* Clear the backpointer at the start of the block to indicate that
905  there is no free block prior to this one. That blocks
906  recombination when the first block in memory is released. */
907  b->bh.bb.prevfree = 0;
908 
909  /* Create a dummy allocated buffer at the end of the pool. This dummy
910  buffer is seen when a buffer at the end of the pool is released and
911  blocks recombination of the last buffer with the dummy buffer at
912  the end. The length in the dummy buffer is set to the largest
913  negative number to denote the end of the pool for diagnostic
914  routines (this specific value is not counted on by the actual
915  allocation and release functions). */
916  len -= sizeof(bhead_t);
917  b->bh.bb.bsize = (bufsize)len;
918  /* Set the owner of this buffer */
919  TCW_PTR(b->bh.bb.bthr,
920  (kmp_info_t *)((kmp_uintptr_t)th |
921  1)); // mark the buffer as allocated address
922 
923  /* Chain the new block to the free list. */
924  __kmp_bget_insert_into_freelist(thr, b);
925 
926 #ifdef FreeWipe
927  (void)memset(((char *)b) + sizeof(bfhead_t), 0x55,
928  (size_t)(len - sizeof(bfhead_t)));
929 #endif
930  bn = BH(((char *)b) + len);
931  bn->bb.prevfree = (bufsize)len;
932  /* Definition of ESent assumes two's complement! */
933  KMP_DEBUG_ASSERT((~0) == -1 && (bn != 0));
934 
935  bn->bb.bsize = ESent;
936 }
937 
938 /* BFREED -- Dump the free lists for this thread. */
939 static void bfreed(kmp_info_t *th) {
940  int bin = 0, count = 0;
941  int gtid = __kmp_gtid_from_thread(th);
942  thr_data_t *thr = get_thr_data(th);
943 
944 #if BufStats
945  __kmp_printf_no_lock("__kmp_printpool: T#%d total=%" KMP_UINT64_SPEC
946  " get=%" KMP_INT64_SPEC " rel=%" KMP_INT64_SPEC
947  " pblk=%" KMP_INT64_SPEC " pget=%" KMP_INT64_SPEC
948  " prel=%" KMP_INT64_SPEC " dget=%" KMP_INT64_SPEC
949  " drel=%" KMP_INT64_SPEC "\n",
950  gtid, (kmp_uint64)thr->totalloc, (kmp_int64)thr->numget,
951  (kmp_int64)thr->numrel, (kmp_int64)thr->numpblk,
952  (kmp_int64)thr->numpget, (kmp_int64)thr->numprel,
953  (kmp_int64)thr->numdget, (kmp_int64)thr->numdrel);
954 #endif
955 
956  for (bin = 0; bin < MAX_BGET_BINS; ++bin) {
957  bfhead_t *b;
958 
959  for (b = thr->freelist[bin].ql.flink; b != &thr->freelist[bin];
960  b = b->ql.flink) {
961  bufsize bs = b->bh.bb.bsize;
962 
963  KMP_DEBUG_ASSERT(b->ql.blink->ql.flink == b);
964  KMP_DEBUG_ASSERT(b->ql.flink->ql.blink == b);
965  KMP_DEBUG_ASSERT(bs > 0);
966 
967  count += 1;
968 
969  __kmp_printf_no_lock(
970  "__kmp_printpool: T#%d Free block: 0x%p size %6ld bytes.\n", gtid, b,
971  (long)bs);
972 #ifdef FreeWipe
973  {
974  char *lerr = ((char *)b) + sizeof(bfhead_t);
975  if ((bs > sizeof(bfhead_t)) &&
976  ((*lerr != 0x55) ||
977  (memcmp(lerr, lerr + 1, (size_t)(bs - (sizeof(bfhead_t) + 1))) !=
978  0))) {
979  __kmp_printf_no_lock("__kmp_printpool: T#%d (Contents of above "
980  "free block have been overstored.)\n",
981  gtid);
982  }
983  }
984 #endif
985  }
986  }
987 
988  if (count == 0)
989  __kmp_printf_no_lock("__kmp_printpool: T#%d No free blocks\n", gtid);
990 }
991 
992 void __kmp_initialize_bget(kmp_info_t *th) {
993  KMP_DEBUG_ASSERT(SizeQuant >= sizeof(void *) && (th != 0));
994 
995  set_thr_data(th);
996 
997  bectl(th, (bget_compact_t)0, (bget_acquire_t)malloc, (bget_release_t)free,
998  (bufsize)__kmp_malloc_pool_incr);
999 }
1000 
1001 void __kmp_finalize_bget(kmp_info_t *th) {
1002  thr_data_t *thr;
1003  bfhead_t *b;
1004 
1005  KMP_DEBUG_ASSERT(th != 0);
1006 
1007 #if BufStats
1008  thr = (thr_data_t *)th->th.th_local.bget_data;
1009  KMP_DEBUG_ASSERT(thr != NULL);
1010  b = thr->last_pool;
1011 
1012  /* If a block-release function is defined, and this free buffer constitutes
1013  the entire block, release it. Note that pool_len is defined in such a way
1014  that the test will fail unless all pool blocks are the same size. */
1015 
1016  // Deallocate the last pool if one exists because we no longer do it in brel()
1017  if (thr->relfcn != 0 && b != 0 && thr->numpblk != 0 &&
1018  b->bh.bb.bsize == (bufsize)(thr->pool_len - sizeof(bhead_t))) {
1019  KMP_DEBUG_ASSERT(b->bh.bb.prevfree == 0);
1020  KMP_DEBUG_ASSERT(BH((char *)b + b->bh.bb.bsize)->bb.bsize == ESent);
1021  KMP_DEBUG_ASSERT(BH((char *)b + b->bh.bb.bsize)->bb.prevfree ==
1022  b->bh.bb.bsize);
1023 
1024  /* Unlink the buffer from the free list */
1025  __kmp_bget_remove_from_freelist(b);
1026 
1027  KE_TRACE(10, ("%%%%%% FREE( %p )\n", (void *)b));
1028 
1029  (*thr->relfcn)(b);
1030  thr->numprel++; /* Nr of expansion block releases */
1031  thr->numpblk--; /* Total number of blocks */
1032  KMP_DEBUG_ASSERT(thr->numpblk == thr->numpget - thr->numprel);
1033  }
1034 #endif /* BufStats */
1035 
1036  /* Deallocate bget_data */
1037  if (th->th.th_local.bget_data != NULL) {
1038  __kmp_free(th->th.th_local.bget_data);
1039  th->th.th_local.bget_data = NULL;
1040  }
1041 }
1042 
1043 void kmpc_set_poolsize(size_t size) {
1044  bectl(__kmp_get_thread(), (bget_compact_t)0, (bget_acquire_t)malloc,
1045  (bget_release_t)free, (bufsize)size);
1046 }
1047 
1048 size_t kmpc_get_poolsize(void) {
1049  thr_data_t *p;
1050 
1051  p = get_thr_data(__kmp_get_thread());
1052 
1053  return p->exp_incr;
1054 }
1055 
1056 void kmpc_set_poolmode(int mode) {
1057  thr_data_t *p;
1058 
1059  if (mode == bget_mode_fifo || mode == bget_mode_lifo ||
1060  mode == bget_mode_best) {
1061  p = get_thr_data(__kmp_get_thread());
1062  p->mode = (bget_mode_t)mode;
1063  }
1064 }
1065 
1066 int kmpc_get_poolmode(void) {
1067  thr_data_t *p;
1068 
1069  p = get_thr_data(__kmp_get_thread());
1070 
1071  return p->mode;
1072 }
1073 
1074 void kmpc_get_poolstat(size_t *maxmem, size_t *allmem) {
1075  kmp_info_t *th = __kmp_get_thread();
1076  bufsize a, b;
1077 
1078  __kmp_bget_dequeue(th); /* Release any queued buffers */
1079 
1080  bcheck(th, &a, &b);
1081 
1082  *maxmem = a;
1083  *allmem = b;
1084 }
1085 
1086 void kmpc_poolprint(void) {
1087  kmp_info_t *th = __kmp_get_thread();
1088 
1089  __kmp_bget_dequeue(th); /* Release any queued buffers */
1090 
1091  bfreed(th);
1092 }
1093 
1094 #endif // #if KMP_USE_BGET
1095 
1096 void *kmpc_malloc(size_t size) {
1097  void *ptr;
1098  ptr = bget(__kmp_entry_thread(), (bufsize)(size + sizeof(ptr)));
1099  if (ptr != NULL) {
1100  // save allocated pointer just before one returned to user
1101  *(void **)ptr = ptr;
1102  ptr = (void **)ptr + 1;
1103  }
1104  return ptr;
1105 }
1106 
1107 #define IS_POWER_OF_TWO(n) (((n) & ((n)-1)) == 0)
1108 
1109 void *kmpc_aligned_malloc(size_t size, size_t alignment) {
1110  void *ptr;
1111  void *ptr_allocated;
1112  KMP_DEBUG_ASSERT(alignment < 32 * 1024); // Alignment should not be too big
1113  if (!IS_POWER_OF_TWO(alignment)) {
1114  // AC: do we need to issue a warning here?
1115  errno = EINVAL;
1116  return NULL;
1117  }
1118  size = size + sizeof(void *) + alignment;
1119  ptr_allocated = bget(__kmp_entry_thread(), (bufsize)size);
1120  if (ptr_allocated != NULL) {
1121  // save allocated pointer just before one returned to user
1122  ptr = (void *)(((kmp_uintptr_t)ptr_allocated + sizeof(void *) + alignment) &
1123  ~(alignment - 1));
1124  *((void **)ptr - 1) = ptr_allocated;
1125  } else {
1126  ptr = NULL;
1127  }
1128  return ptr;
1129 }
1130 
1131 void *kmpc_calloc(size_t nelem, size_t elsize) {
1132  void *ptr;
1133  ptr = bgetz(__kmp_entry_thread(), (bufsize)(nelem * elsize + sizeof(ptr)));
1134  if (ptr != NULL) {
1135  // save allocated pointer just before one returned to user
1136  *(void **)ptr = ptr;
1137  ptr = (void **)ptr + 1;
1138  }
1139  return ptr;
1140 }
1141 
1142 void *kmpc_realloc(void *ptr, size_t size) {
1143  void *result = NULL;
1144  if (ptr == NULL) {
1145  // If pointer is NULL, realloc behaves like malloc.
1146  result = bget(__kmp_entry_thread(), (bufsize)(size + sizeof(ptr)));
1147  // save allocated pointer just before one returned to user
1148  if (result != NULL) {
1149  *(void **)result = result;
1150  result = (void **)result + 1;
1151  }
1152  } else if (size == 0) {
1153  // If size is 0, realloc behaves like free.
1154  // The thread must be registered by the call to kmpc_malloc() or
1155  // kmpc_calloc() before.
1156  // So it should be safe to call __kmp_get_thread(), not
1157  // __kmp_entry_thread().
1158  KMP_ASSERT(*((void **)ptr - 1));
1159  brel(__kmp_get_thread(), *((void **)ptr - 1));
1160  } else {
1161  result = bgetr(__kmp_entry_thread(), *((void **)ptr - 1),
1162  (bufsize)(size + sizeof(ptr)));
1163  if (result != NULL) {
1164  *(void **)result = result;
1165  result = (void **)result + 1;
1166  }
1167  }
1168  return result;
1169 }
1170 
1171 // NOTE: the library must have already been initialized by a previous allocate
1172 void kmpc_free(void *ptr) {
1173  if (!__kmp_init_serial) {
1174  return;
1175  }
1176  if (ptr != NULL) {
1177  kmp_info_t *th = __kmp_get_thread();
1178  __kmp_bget_dequeue(th); /* Release any queued buffers */
1179  // extract allocated pointer and free it
1180  KMP_ASSERT(*((void **)ptr - 1));
1181  brel(th, *((void **)ptr - 1));
1182  }
1183 }
1184 
1185 void *___kmp_thread_malloc(kmp_info_t *th, size_t size KMP_SRC_LOC_DECL) {
1186  void *ptr;
1187  KE_TRACE(30, ("-> __kmp_thread_malloc( %p, %d ) called from %s:%d\n", th,
1188  (int)size KMP_SRC_LOC_PARM));
1189  ptr = bget(th, (bufsize)size);
1190  KE_TRACE(30, ("<- __kmp_thread_malloc() returns %p\n", ptr));
1191  return ptr;
1192 }
1193 
1194 void *___kmp_thread_calloc(kmp_info_t *th, size_t nelem,
1195  size_t elsize KMP_SRC_LOC_DECL) {
1196  void *ptr;
1197  KE_TRACE(30, ("-> __kmp_thread_calloc( %p, %d, %d ) called from %s:%d\n", th,
1198  (int)nelem, (int)elsize KMP_SRC_LOC_PARM));
1199  ptr = bgetz(th, (bufsize)(nelem * elsize));
1200  KE_TRACE(30, ("<- __kmp_thread_calloc() returns %p\n", ptr));
1201  return ptr;
1202 }
1203 
1204 void *___kmp_thread_realloc(kmp_info_t *th, void *ptr,
1205  size_t size KMP_SRC_LOC_DECL) {
1206  KE_TRACE(30, ("-> __kmp_thread_realloc( %p, %p, %d ) called from %s:%d\n", th,
1207  ptr, (int)size KMP_SRC_LOC_PARM));
1208  ptr = bgetr(th, ptr, (bufsize)size);
1209  KE_TRACE(30, ("<- __kmp_thread_realloc() returns %p\n", ptr));
1210  return ptr;
1211 }
1212 
1213 void ___kmp_thread_free(kmp_info_t *th, void *ptr KMP_SRC_LOC_DECL) {
1214  KE_TRACE(30, ("-> __kmp_thread_free( %p, %p ) called from %s:%d\n", th,
1215  ptr KMP_SRC_LOC_PARM));
1216  if (ptr != NULL) {
1217  __kmp_bget_dequeue(th); /* Release any queued buffers */
1218  brel(th, ptr);
1219  }
1220  KE_TRACE(30, ("<- __kmp_thread_free()\n"));
1221 }
1222 
1223 /* OMP 5.0 Memory Management support */
1224 static const char *kmp_mk_lib_name;
1225 static void *h_memkind;
1226 /* memkind experimental API: */
1227 // memkind_alloc
1228 static void *(*kmp_mk_alloc)(void *k, size_t sz);
1229 // memkind_free
1230 static void (*kmp_mk_free)(void *kind, void *ptr);
1231 // memkind_check_available
1232 static int (*kmp_mk_check)(void *kind);
1233 // kinds we are going to use
1234 static void **mk_default;
1235 static void **mk_interleave;
1236 static void **mk_hbw;
1237 static void **mk_hbw_interleave;
1238 static void **mk_hbw_preferred;
1239 static void **mk_hugetlb;
1240 static void **mk_hbw_hugetlb;
1241 static void **mk_hbw_preferred_hugetlb;
1242 static void **mk_dax_kmem;
1243 static void **mk_dax_kmem_all;
1244 static void **mk_dax_kmem_preferred;
1245 // Preview of target memory support
1246 static void *(*kmp_target_alloc_host)(size_t size, int device);
1247 static void *(*kmp_target_alloc_shared)(size_t size, int device);
1248 static void *(*kmp_target_alloc_device)(size_t size, int device);
1249 static void *(*kmp_target_free)(void *ptr, int device);
1250 static bool __kmp_target_mem_available;
1251 #define KMP_IS_TARGET_MEM_SPACE(MS) \
1252  (MS == llvm_omp_target_host_mem_space || \
1253  MS == llvm_omp_target_shared_mem_space || \
1254  MS == llvm_omp_target_device_mem_space)
1255 #define KMP_IS_TARGET_MEM_ALLOC(MA) \
1256  (MA == llvm_omp_target_host_mem_alloc || \
1257  MA == llvm_omp_target_shared_mem_alloc || \
1258  MA == llvm_omp_target_device_mem_alloc)
1259 
1260 #if KMP_OS_UNIX && KMP_DYNAMIC_LIB
1261 static inline void chk_kind(void ***pkind) {
1262  KMP_DEBUG_ASSERT(pkind);
1263  if (*pkind) // symbol found
1264  if (kmp_mk_check(**pkind)) // kind not available or error
1265  *pkind = NULL;
1266 }
1267 #endif
1268 
1269 void __kmp_init_memkind() {
1270 // as of 2018-07-31 memkind does not support Windows*, exclude it for now
1271 #if KMP_OS_UNIX && KMP_DYNAMIC_LIB
1272  // use of statically linked memkind is problematic, as it depends on libnuma
1273  kmp_mk_lib_name = "libmemkind.so";
1274  h_memkind = dlopen(kmp_mk_lib_name, RTLD_LAZY);
1275  if (h_memkind) {
1276  kmp_mk_check = (int (*)(void *))dlsym(h_memkind, "memkind_check_available");
1277  kmp_mk_alloc =
1278  (void *(*)(void *, size_t))dlsym(h_memkind, "memkind_malloc");
1279  kmp_mk_free = (void (*)(void *, void *))dlsym(h_memkind, "memkind_free");
1280  mk_default = (void **)dlsym(h_memkind, "MEMKIND_DEFAULT");
1281  if (kmp_mk_check && kmp_mk_alloc && kmp_mk_free && mk_default &&
1282  !kmp_mk_check(*mk_default)) {
1283  __kmp_memkind_available = 1;
1284  mk_interleave = (void **)dlsym(h_memkind, "MEMKIND_INTERLEAVE");
1285  chk_kind(&mk_interleave);
1286  mk_hbw = (void **)dlsym(h_memkind, "MEMKIND_HBW");
1287  chk_kind(&mk_hbw);
1288  mk_hbw_interleave = (void **)dlsym(h_memkind, "MEMKIND_HBW_INTERLEAVE");
1289  chk_kind(&mk_hbw_interleave);
1290  mk_hbw_preferred = (void **)dlsym(h_memkind, "MEMKIND_HBW_PREFERRED");
1291  chk_kind(&mk_hbw_preferred);
1292  mk_hugetlb = (void **)dlsym(h_memkind, "MEMKIND_HUGETLB");
1293  chk_kind(&mk_hugetlb);
1294  mk_hbw_hugetlb = (void **)dlsym(h_memkind, "MEMKIND_HBW_HUGETLB");
1295  chk_kind(&mk_hbw_hugetlb);
1296  mk_hbw_preferred_hugetlb =
1297  (void **)dlsym(h_memkind, "MEMKIND_HBW_PREFERRED_HUGETLB");
1298  chk_kind(&mk_hbw_preferred_hugetlb);
1299  mk_dax_kmem = (void **)dlsym(h_memkind, "MEMKIND_DAX_KMEM");
1300  chk_kind(&mk_dax_kmem);
1301  mk_dax_kmem_all = (void **)dlsym(h_memkind, "MEMKIND_DAX_KMEM_ALL");
1302  chk_kind(&mk_dax_kmem_all);
1303  mk_dax_kmem_preferred =
1304  (void **)dlsym(h_memkind, "MEMKIND_DAX_KMEM_PREFERRED");
1305  chk_kind(&mk_dax_kmem_preferred);
1306  KE_TRACE(25, ("__kmp_init_memkind: memkind library initialized\n"));
1307  return; // success
1308  }
1309  dlclose(h_memkind); // failure
1310  }
1311 #else // !(KMP_OS_UNIX && KMP_DYNAMIC_LIB)
1312  kmp_mk_lib_name = "";
1313 #endif // !(KMP_OS_UNIX && KMP_DYNAMIC_LIB)
1314  h_memkind = NULL;
1315  kmp_mk_check = NULL;
1316  kmp_mk_alloc = NULL;
1317  kmp_mk_free = NULL;
1318  mk_default = NULL;
1319  mk_interleave = NULL;
1320  mk_hbw = NULL;
1321  mk_hbw_interleave = NULL;
1322  mk_hbw_preferred = NULL;
1323  mk_hugetlb = NULL;
1324  mk_hbw_hugetlb = NULL;
1325  mk_hbw_preferred_hugetlb = NULL;
1326  mk_dax_kmem = NULL;
1327  mk_dax_kmem_all = NULL;
1328  mk_dax_kmem_preferred = NULL;
1329 }
1330 
1331 void __kmp_fini_memkind() {
1332 #if KMP_OS_UNIX && KMP_DYNAMIC_LIB
1333  if (__kmp_memkind_available)
1334  KE_TRACE(25, ("__kmp_fini_memkind: finalize memkind library\n"));
1335  if (h_memkind) {
1336  dlclose(h_memkind);
1337  h_memkind = NULL;
1338  }
1339  kmp_mk_check = NULL;
1340  kmp_mk_alloc = NULL;
1341  kmp_mk_free = NULL;
1342  mk_default = NULL;
1343  mk_interleave = NULL;
1344  mk_hbw = NULL;
1345  mk_hbw_interleave = NULL;
1346  mk_hbw_preferred = NULL;
1347  mk_hugetlb = NULL;
1348  mk_hbw_hugetlb = NULL;
1349  mk_hbw_preferred_hugetlb = NULL;
1350  mk_dax_kmem = NULL;
1351  mk_dax_kmem_all = NULL;
1352  mk_dax_kmem_preferred = NULL;
1353 #endif
1354 }
1355 // Preview of target memory support
1356 void __kmp_init_target_mem() {
1357  *(void **)(&kmp_target_alloc_host) = KMP_DLSYM("llvm_omp_target_alloc_host");
1358  *(void **)(&kmp_target_alloc_shared) =
1359  KMP_DLSYM("llvm_omp_target_alloc_shared");
1360  *(void **)(&kmp_target_alloc_device) =
1361  KMP_DLSYM("llvm_omp_target_alloc_device");
1362  *(void **)(&kmp_target_free) = KMP_DLSYM("omp_target_free");
1363  __kmp_target_mem_available = kmp_target_alloc_host &&
1364  kmp_target_alloc_shared &&
1365  kmp_target_alloc_device && kmp_target_free;
1366 }
1367 
1368 omp_allocator_handle_t __kmpc_init_allocator(int gtid, omp_memspace_handle_t ms,
1369  int ntraits,
1370  omp_alloctrait_t traits[]) {
1371  // OpenMP 5.0 only allows predefined memspaces
1372  KMP_DEBUG_ASSERT(ms == omp_default_mem_space || ms == omp_low_lat_mem_space ||
1373  ms == omp_large_cap_mem_space || ms == omp_const_mem_space ||
1374  ms == omp_high_bw_mem_space || KMP_IS_TARGET_MEM_SPACE(ms));
1375  kmp_allocator_t *al;
1376  int i;
1377  al = (kmp_allocator_t *)__kmp_allocate(sizeof(kmp_allocator_t)); // zeroed
1378  al->memspace = ms; // not used currently
1379  for (i = 0; i < ntraits; ++i) {
1380  switch (traits[i].key) {
1381  case omp_atk_sync_hint:
1382  case omp_atk_access:
1383  case omp_atk_pinned:
1384  break;
1385  case omp_atk_alignment:
1386  __kmp_type_convert(traits[i].value, &(al->alignment));
1387  KMP_ASSERT(IS_POWER_OF_TWO(al->alignment));
1388  break;
1389  case omp_atk_pool_size:
1390  al->pool_size = traits[i].value;
1391  break;
1392  case omp_atk_fallback:
1393  al->fb = (omp_alloctrait_value_t)traits[i].value;
1394  KMP_DEBUG_ASSERT(
1395  al->fb == omp_atv_default_mem_fb || al->fb == omp_atv_null_fb ||
1396  al->fb == omp_atv_abort_fb || al->fb == omp_atv_allocator_fb);
1397  break;
1398  case omp_atk_fb_data:
1399  al->fb_data = RCAST(kmp_allocator_t *, traits[i].value);
1400  break;
1401  case omp_atk_partition:
1402  al->memkind = RCAST(void **, traits[i].value);
1403  break;
1404  default:
1405  KMP_ASSERT2(0, "Unexpected allocator trait");
1406  }
1407  }
1408  if (al->fb == 0) {
1409  // set default allocator
1410  al->fb = omp_atv_default_mem_fb;
1411  al->fb_data = (kmp_allocator_t *)omp_default_mem_alloc;
1412  } else if (al->fb == omp_atv_allocator_fb) {
1413  KMP_ASSERT(al->fb_data != NULL);
1414  } else if (al->fb == omp_atv_default_mem_fb) {
1415  al->fb_data = (kmp_allocator_t *)omp_default_mem_alloc;
1416  }
1417  if (__kmp_memkind_available) {
1418  // Let's use memkind library if available
1419  if (ms == omp_high_bw_mem_space) {
1420  if (al->memkind == (void *)omp_atv_interleaved && mk_hbw_interleave) {
1421  al->memkind = mk_hbw_interleave;
1422  } else if (mk_hbw_preferred) {
1423  // AC: do not try to use MEMKIND_HBW for now, because memkind library
1424  // cannot reliably detect exhaustion of HBW memory.
1425  // It could be possible using hbw_verify_memory_region() but memkind
1426  // manual says: "Using this function in production code may result in
1427  // serious performance penalty".
1428  al->memkind = mk_hbw_preferred;
1429  } else {
1430  // HBW is requested but not available --> return NULL allocator
1431  __kmp_free(al);
1432  return omp_null_allocator;
1433  }
1434  } else if (ms == omp_large_cap_mem_space) {
1435  if (mk_dax_kmem_all) {
1436  // All pmem nodes are visited
1437  al->memkind = mk_dax_kmem_all;
1438  } else if (mk_dax_kmem) {
1439  // Only closest pmem node is visited
1440  al->memkind = mk_dax_kmem;
1441  } else {
1442  __kmp_free(al);
1443  return omp_null_allocator;
1444  }
1445  } else {
1446  if (al->memkind == (void *)omp_atv_interleaved && mk_interleave) {
1447  al->memkind = mk_interleave;
1448  } else {
1449  al->memkind = mk_default;
1450  }
1451  }
1452  } else if (KMP_IS_TARGET_MEM_SPACE(ms) && !__kmp_target_mem_available) {
1453  __kmp_free(al);
1454  return omp_null_allocator;
1455  } else {
1456  if (ms == omp_high_bw_mem_space) {
1457  // cannot detect HBW memory presence without memkind library
1458  __kmp_free(al);
1459  return omp_null_allocator;
1460  }
1461  }
1462  return (omp_allocator_handle_t)al;
1463 }
1464 
1465 void __kmpc_destroy_allocator(int gtid, omp_allocator_handle_t allocator) {
1466  if (allocator > kmp_max_mem_alloc)
1467  __kmp_free(allocator);
1468 }
1469 
1470 void __kmpc_set_default_allocator(int gtid, omp_allocator_handle_t allocator) {
1471  if (allocator == omp_null_allocator)
1472  allocator = omp_default_mem_alloc;
1473  __kmp_threads[gtid]->th.th_def_allocator = allocator;
1474 }
1475 
1476 omp_allocator_handle_t __kmpc_get_default_allocator(int gtid) {
1477  return __kmp_threads[gtid]->th.th_def_allocator;
1478 }
1479 
1480 typedef struct kmp_mem_desc { // Memory block descriptor
1481  void *ptr_alloc; // Pointer returned by allocator
1482  size_t size_a; // Size of allocated memory block (initial+descriptor+align)
1483  size_t size_orig; // Original size requested
1484  void *ptr_align; // Pointer to aligned memory, returned
1485  kmp_allocator_t *allocator; // allocator
1486 } kmp_mem_desc_t;
1487 static int alignment = sizeof(void *); // align to pointer size by default
1488 
1489 // external interfaces are wrappers over internal implementation
1490 void *__kmpc_alloc(int gtid, size_t size, omp_allocator_handle_t allocator) {
1491  KE_TRACE(25, ("__kmpc_alloc: T#%d (%d, %p)\n", gtid, (int)size, allocator));
1492  void *ptr = __kmp_alloc(gtid, 0, size, allocator);
1493  KE_TRACE(25, ("__kmpc_alloc returns %p, T#%d\n", ptr, gtid));
1494  return ptr;
1495 }
1496 
1497 void *__kmpc_aligned_alloc(int gtid, size_t algn, size_t size,
1498  omp_allocator_handle_t allocator) {
1499  KE_TRACE(25, ("__kmpc_aligned_alloc: T#%d (%d, %d, %p)\n", gtid, (int)algn,
1500  (int)size, allocator));
1501  void *ptr = __kmp_alloc(gtid, algn, size, allocator);
1502  KE_TRACE(25, ("__kmpc_aligned_alloc returns %p, T#%d\n", ptr, gtid));
1503  return ptr;
1504 }
1505 
1506 void *__kmpc_calloc(int gtid, size_t nmemb, size_t size,
1507  omp_allocator_handle_t allocator) {
1508  KE_TRACE(25, ("__kmpc_calloc: T#%d (%d, %d, %p)\n", gtid, (int)nmemb,
1509  (int)size, allocator));
1510  void *ptr = __kmp_calloc(gtid, 0, nmemb, size, allocator);
1511  KE_TRACE(25, ("__kmpc_calloc returns %p, T#%d\n", ptr, gtid));
1512  return ptr;
1513 }
1514 
1515 void *__kmpc_realloc(int gtid, void *ptr, size_t size,
1516  omp_allocator_handle_t allocator,
1517  omp_allocator_handle_t free_allocator) {
1518  KE_TRACE(25, ("__kmpc_realloc: T#%d (%p, %d, %p, %p)\n", gtid, ptr, (int)size,
1519  allocator, free_allocator));
1520  void *nptr = __kmp_realloc(gtid, ptr, size, allocator, free_allocator);
1521  KE_TRACE(25, ("__kmpc_realloc returns %p, T#%d\n", nptr, gtid));
1522  return nptr;
1523 }
1524 
1525 void __kmpc_free(int gtid, void *ptr, omp_allocator_handle_t allocator) {
1526  KE_TRACE(25, ("__kmpc_free: T#%d free(%p,%p)\n", gtid, ptr, allocator));
1527  ___kmpc_free(gtid, ptr, allocator);
1528  KE_TRACE(10, ("__kmpc_free: T#%d freed %p (%p)\n", gtid, ptr, allocator));
1529  return;
1530 }
1531 
1532 // internal implementation, called from inside the library
1533 void *__kmp_alloc(int gtid, size_t algn, size_t size,
1534  omp_allocator_handle_t allocator) {
1535  void *ptr = NULL;
1536  kmp_allocator_t *al;
1537  KMP_DEBUG_ASSERT(__kmp_init_serial);
1538  if (size == 0)
1539  return NULL;
1540  if (allocator == omp_null_allocator)
1541  allocator = __kmp_threads[gtid]->th.th_def_allocator;
1542 
1543  al = RCAST(kmp_allocator_t *, allocator);
1544 
1545  int sz_desc = sizeof(kmp_mem_desc_t);
1546  kmp_mem_desc_t desc;
1547  kmp_uintptr_t addr; // address returned by allocator
1548  kmp_uintptr_t addr_align; // address to return to caller
1549  kmp_uintptr_t addr_descr; // address of memory block descriptor
1550  size_t align = alignment; // default alignment
1551  if (allocator > kmp_max_mem_alloc && al->alignment > align)
1552  align = al->alignment; // alignment required by allocator trait
1553  if (align < algn)
1554  align = algn; // max of allocator trait, parameter and sizeof(void*)
1555  desc.size_orig = size;
1556  desc.size_a = size + sz_desc + align;
1557 
1558  if (__kmp_memkind_available) {
1559  if (allocator < kmp_max_mem_alloc) {
1560  // pre-defined allocator
1561  if (allocator == omp_high_bw_mem_alloc && mk_hbw_preferred) {
1562  ptr = kmp_mk_alloc(*mk_hbw_preferred, desc.size_a);
1563  } else if (allocator == omp_large_cap_mem_alloc && mk_dax_kmem_all) {
1564  ptr = kmp_mk_alloc(*mk_dax_kmem_all, desc.size_a);
1565  } else {
1566  ptr = kmp_mk_alloc(*mk_default, desc.size_a);
1567  }
1568  } else if (al->pool_size > 0) {
1569  // custom allocator with pool size requested
1570  kmp_uint64 used =
1571  KMP_TEST_THEN_ADD64((kmp_int64 *)&al->pool_used, desc.size_a);
1572  if (used + desc.size_a > al->pool_size) {
1573  // not enough space, need to go fallback path
1574  KMP_TEST_THEN_ADD64((kmp_int64 *)&al->pool_used, -desc.size_a);
1575  if (al->fb == omp_atv_default_mem_fb) {
1576  al = (kmp_allocator_t *)omp_default_mem_alloc;
1577  ptr = kmp_mk_alloc(*mk_default, desc.size_a);
1578  } else if (al->fb == omp_atv_abort_fb) {
1579  KMP_ASSERT(0); // abort fallback requested
1580  } else if (al->fb == omp_atv_allocator_fb) {
1581  KMP_ASSERT(al != al->fb_data);
1582  al = al->fb_data;
1583  return __kmp_alloc(gtid, algn, size, (omp_allocator_handle_t)al);
1584  } // else ptr == NULL;
1585  } else {
1586  // pool has enough space
1587  ptr = kmp_mk_alloc(*al->memkind, desc.size_a);
1588  if (ptr == NULL) {
1589  if (al->fb == omp_atv_default_mem_fb) {
1590  al = (kmp_allocator_t *)omp_default_mem_alloc;
1591  ptr = kmp_mk_alloc(*mk_default, desc.size_a);
1592  } else if (al->fb == omp_atv_abort_fb) {
1593  KMP_ASSERT(0); // abort fallback requested
1594  } else if (al->fb == omp_atv_allocator_fb) {
1595  KMP_ASSERT(al != al->fb_data);
1596  al = al->fb_data;
1597  return __kmp_alloc(gtid, algn, size, (omp_allocator_handle_t)al);
1598  }
1599  }
1600  }
1601  } else {
1602  // custom allocator, pool size not requested
1603  ptr = kmp_mk_alloc(*al->memkind, desc.size_a);
1604  if (ptr == NULL) {
1605  if (al->fb == omp_atv_default_mem_fb) {
1606  al = (kmp_allocator_t *)omp_default_mem_alloc;
1607  ptr = kmp_mk_alloc(*mk_default, desc.size_a);
1608  } else if (al->fb == omp_atv_abort_fb) {
1609  KMP_ASSERT(0); // abort fallback requested
1610  } else if (al->fb == omp_atv_allocator_fb) {
1611  KMP_ASSERT(al != al->fb_data);
1612  al = al->fb_data;
1613  return __kmp_alloc(gtid, algn, size, (omp_allocator_handle_t)al);
1614  }
1615  }
1616  }
1617  } else if (allocator < kmp_max_mem_alloc) {
1618  if (KMP_IS_TARGET_MEM_ALLOC(allocator)) {
1619  // Use size input directly as the memory may not be accessible on host.
1620  // Use default device for now.
1621  if (__kmp_target_mem_available) {
1622  kmp_int32 device =
1623  __kmp_threads[gtid]->th.th_current_task->td_icvs.default_device;
1624  if (allocator == llvm_omp_target_host_mem_alloc)
1625  ptr = kmp_target_alloc_host(size, device);
1626  else if (allocator == llvm_omp_target_shared_mem_alloc)
1627  ptr = kmp_target_alloc_shared(size, device);
1628  else // allocator == llvm_omp_target_device_mem_alloc
1629  ptr = kmp_target_alloc_device(size, device);
1630  }
1631  return ptr;
1632  }
1633 
1634  // pre-defined allocator
1635  if (allocator == omp_high_bw_mem_alloc) {
1636  // ptr = NULL;
1637  } else if (allocator == omp_large_cap_mem_alloc) {
1638  // warnings?
1639  } else {
1640  ptr = __kmp_thread_malloc(__kmp_thread_from_gtid(gtid), desc.size_a);
1641  }
1642  } else if (KMP_IS_TARGET_MEM_SPACE(al->memspace)) {
1643  if (__kmp_target_mem_available) {
1644  kmp_int32 device =
1645  __kmp_threads[gtid]->th.th_current_task->td_icvs.default_device;
1646  if (al->memspace == llvm_omp_target_host_mem_space)
1647  ptr = kmp_target_alloc_host(size, device);
1648  else if (al->memspace == llvm_omp_target_shared_mem_space)
1649  ptr = kmp_target_alloc_shared(size, device);
1650  else // al->memspace == llvm_omp_target_device_mem_space
1651  ptr = kmp_target_alloc_device(size, device);
1652  }
1653  return ptr;
1654  } else if (al->pool_size > 0) {
1655  // custom allocator with pool size requested
1656  kmp_uint64 used =
1657  KMP_TEST_THEN_ADD64((kmp_int64 *)&al->pool_used, desc.size_a);
1658  if (used + desc.size_a > al->pool_size) {
1659  // not enough space, need to go fallback path
1660  KMP_TEST_THEN_ADD64((kmp_int64 *)&al->pool_used, -desc.size_a);
1661  if (al->fb == omp_atv_default_mem_fb) {
1662  al = (kmp_allocator_t *)omp_default_mem_alloc;
1663  ptr = __kmp_thread_malloc(__kmp_thread_from_gtid(gtid), desc.size_a);
1664  } else if (al->fb == omp_atv_abort_fb) {
1665  KMP_ASSERT(0); // abort fallback requested
1666  } else if (al->fb == omp_atv_allocator_fb) {
1667  KMP_ASSERT(al != al->fb_data);
1668  al = al->fb_data;
1669  return __kmp_alloc(gtid, algn, size, (omp_allocator_handle_t)al);
1670  } // else ptr == NULL;
1671  } else {
1672  // pool has enough space
1673  ptr = __kmp_thread_malloc(__kmp_thread_from_gtid(gtid), desc.size_a);
1674  if (ptr == NULL && al->fb == omp_atv_abort_fb) {
1675  KMP_ASSERT(0); // abort fallback requested
1676  } // no sense to look for another fallback because of same internal alloc
1677  }
1678  } else {
1679  // custom allocator, pool size not requested
1680  ptr = __kmp_thread_malloc(__kmp_thread_from_gtid(gtid), desc.size_a);
1681  if (ptr == NULL && al->fb == omp_atv_abort_fb) {
1682  KMP_ASSERT(0); // abort fallback requested
1683  } // no sense to look for another fallback because of same internal alloc
1684  }
1685  KE_TRACE(10, ("__kmp_alloc: T#%d %p=alloc(%d)\n", gtid, ptr, desc.size_a));
1686  if (ptr == NULL)
1687  return NULL;
1688 
1689  addr = (kmp_uintptr_t)ptr;
1690  addr_align = (addr + sz_desc + align - 1) & ~(align - 1);
1691  addr_descr = addr_align - sz_desc;
1692 
1693  desc.ptr_alloc = ptr;
1694  desc.ptr_align = (void *)addr_align;
1695  desc.allocator = al;
1696  *((kmp_mem_desc_t *)addr_descr) = desc; // save descriptor contents
1697  KMP_MB();
1698 
1699  return desc.ptr_align;
1700 }
1701 
1702 void *__kmp_calloc(int gtid, size_t algn, size_t nmemb, size_t size,
1703  omp_allocator_handle_t allocator) {
1704  void *ptr = NULL;
1705  kmp_allocator_t *al;
1706  KMP_DEBUG_ASSERT(__kmp_init_serial);
1707 
1708  if (allocator == omp_null_allocator)
1709  allocator = __kmp_threads[gtid]->th.th_def_allocator;
1710 
1711  al = RCAST(kmp_allocator_t *, allocator);
1712 
1713  if (nmemb == 0 || size == 0)
1714  return ptr;
1715 
1716  if ((SIZE_MAX - sizeof(kmp_mem_desc_t)) / size < nmemb) {
1717  if (al->fb == omp_atv_abort_fb) {
1718  KMP_ASSERT(0);
1719  }
1720  return ptr;
1721  }
1722 
1723  ptr = __kmp_alloc(gtid, algn, nmemb * size, allocator);
1724 
1725  if (ptr) {
1726  memset(ptr, 0x00, nmemb * size);
1727  }
1728  return ptr;
1729 }
1730 
1731 void *__kmp_realloc(int gtid, void *ptr, size_t size,
1732  omp_allocator_handle_t allocator,
1733  omp_allocator_handle_t free_allocator) {
1734  void *nptr = NULL;
1735  KMP_DEBUG_ASSERT(__kmp_init_serial);
1736 
1737  if (size == 0) {
1738  if (ptr != NULL)
1739  ___kmpc_free(gtid, ptr, free_allocator);
1740  return nptr;
1741  }
1742 
1743  nptr = __kmp_alloc(gtid, 0, size, allocator);
1744 
1745  if (nptr != NULL && ptr != NULL) {
1746  kmp_mem_desc_t desc;
1747  kmp_uintptr_t addr_align; // address to return to caller
1748  kmp_uintptr_t addr_descr; // address of memory block descriptor
1749 
1750  addr_align = (kmp_uintptr_t)ptr;
1751  addr_descr = addr_align - sizeof(kmp_mem_desc_t);
1752  desc = *((kmp_mem_desc_t *)addr_descr); // read descriptor
1753 
1754  KMP_DEBUG_ASSERT(desc.ptr_align == ptr);
1755  KMP_DEBUG_ASSERT(desc.size_orig > 0);
1756  KMP_DEBUG_ASSERT(desc.size_orig < desc.size_a);
1757  KMP_MEMCPY((char *)nptr, (char *)ptr,
1758  (size_t)((size < desc.size_orig) ? size : desc.size_orig));
1759  }
1760 
1761  if (nptr != NULL) {
1762  ___kmpc_free(gtid, ptr, free_allocator);
1763  }
1764 
1765  return nptr;
1766 }
1767 
1768 void ___kmpc_free(int gtid, void *ptr, omp_allocator_handle_t allocator) {
1769  if (ptr == NULL)
1770  return;
1771 
1772  kmp_allocator_t *al;
1773  omp_allocator_handle_t oal;
1774  al = RCAST(kmp_allocator_t *, CCAST(omp_allocator_handle_t, allocator));
1775  kmp_mem_desc_t desc;
1776  kmp_uintptr_t addr_align; // address to return to caller
1777  kmp_uintptr_t addr_descr; // address of memory block descriptor
1778  if (KMP_IS_TARGET_MEM_ALLOC(allocator) ||
1779  (allocator > kmp_max_mem_alloc &&
1780  KMP_IS_TARGET_MEM_SPACE(al->memspace))) {
1781  KMP_DEBUG_ASSERT(kmp_target_free);
1782  kmp_int32 device =
1783  __kmp_threads[gtid]->th.th_current_task->td_icvs.default_device;
1784  kmp_target_free(ptr, device);
1785  return;
1786  }
1787 
1788  addr_align = (kmp_uintptr_t)ptr;
1789  addr_descr = addr_align - sizeof(kmp_mem_desc_t);
1790  desc = *((kmp_mem_desc_t *)addr_descr); // read descriptor
1791 
1792  KMP_DEBUG_ASSERT(desc.ptr_align == ptr);
1793  if (allocator) {
1794  KMP_DEBUG_ASSERT(desc.allocator == al || desc.allocator == al->fb_data);
1795  }
1796  al = desc.allocator;
1797  oal = (omp_allocator_handle_t)al; // cast to void* for comparisons
1798  KMP_DEBUG_ASSERT(al);
1799 
1800  if (__kmp_memkind_available) {
1801  if (oal < kmp_max_mem_alloc) {
1802  // pre-defined allocator
1803  if (oal == omp_high_bw_mem_alloc && mk_hbw_preferred) {
1804  kmp_mk_free(*mk_hbw_preferred, desc.ptr_alloc);
1805  } else if (oal == omp_large_cap_mem_alloc && mk_dax_kmem_all) {
1806  kmp_mk_free(*mk_dax_kmem_all, desc.ptr_alloc);
1807  } else {
1808  kmp_mk_free(*mk_default, desc.ptr_alloc);
1809  }
1810  } else {
1811  if (al->pool_size > 0) { // custom allocator with pool size requested
1812  kmp_uint64 used =
1813  KMP_TEST_THEN_ADD64((kmp_int64 *)&al->pool_used, -desc.size_a);
1814  (void)used; // to suppress compiler warning
1815  KMP_DEBUG_ASSERT(used >= desc.size_a);
1816  }
1817  kmp_mk_free(*al->memkind, desc.ptr_alloc);
1818  }
1819  } else {
1820  if (oal > kmp_max_mem_alloc && al->pool_size > 0) {
1821  kmp_uint64 used =
1822  KMP_TEST_THEN_ADD64((kmp_int64 *)&al->pool_used, -desc.size_a);
1823  (void)used; // to suppress compiler warning
1824  KMP_DEBUG_ASSERT(used >= desc.size_a);
1825  }
1826  __kmp_thread_free(__kmp_thread_from_gtid(gtid), desc.ptr_alloc);
1827  }
1828 }
1829 
1830 /* If LEAK_MEMORY is defined, __kmp_free() will *not* free memory. It causes
1831  memory leaks, but it may be useful for debugging memory corruptions, used
1832  freed pointers, etc. */
1833 /* #define LEAK_MEMORY */
1834 struct kmp_mem_descr { // Memory block descriptor.
1835  void *ptr_allocated; // Pointer returned by malloc(), subject for free().
1836  size_t size_allocated; // Size of allocated memory block.
1837  void *ptr_aligned; // Pointer to aligned memory, to be used by client code.
1838  size_t size_aligned; // Size of aligned memory block.
1839 };
1840 typedef struct kmp_mem_descr kmp_mem_descr_t;
1841 
1842 /* Allocate memory on requested boundary, fill allocated memory with 0x00.
1843  NULL is NEVER returned, __kmp_abort() is called in case of memory allocation
1844  error. Must use __kmp_free when freeing memory allocated by this routine! */
1845 static void *___kmp_allocate_align(size_t size,
1846  size_t alignment KMP_SRC_LOC_DECL) {
1847  /* __kmp_allocate() allocates (by call to malloc()) bigger memory block than
1848  requested to return properly aligned pointer. Original pointer returned
1849  by malloc() and size of allocated block is saved in descriptor just
1850  before the aligned pointer. This information used by __kmp_free() -- it
1851  has to pass to free() original pointer, not aligned one.
1852 
1853  +---------+------------+-----------------------------------+---------+
1854  | padding | descriptor | aligned block | padding |
1855  +---------+------------+-----------------------------------+---------+
1856  ^ ^
1857  | |
1858  | +- Aligned pointer returned to caller
1859  +- Pointer returned by malloc()
1860 
1861  Aligned block is filled with zeros, paddings are filled with 0xEF. */
1862 
1863  kmp_mem_descr_t descr;
1864  kmp_uintptr_t addr_allocated; // Address returned by malloc().
1865  kmp_uintptr_t addr_aligned; // Aligned address to return to caller.
1866  kmp_uintptr_t addr_descr; // Address of memory block descriptor.
1867 
1868  KE_TRACE(25, ("-> ___kmp_allocate_align( %d, %d ) called from %s:%d\n",
1869  (int)size, (int)alignment KMP_SRC_LOC_PARM));
1870 
1871  KMP_DEBUG_ASSERT(alignment < 32 * 1024); // Alignment should not be too
1872  KMP_DEBUG_ASSERT(sizeof(void *) <= sizeof(kmp_uintptr_t));
1873  // Make sure kmp_uintptr_t is enough to store addresses.
1874 
1875  descr.size_aligned = size;
1876  descr.size_allocated =
1877  descr.size_aligned + sizeof(kmp_mem_descr_t) + alignment;
1878 
1879 #if KMP_DEBUG
1880  descr.ptr_allocated = _malloc_src_loc(descr.size_allocated, _file_, _line_);
1881 #else
1882  descr.ptr_allocated = malloc_src_loc(descr.size_allocated KMP_SRC_LOC_PARM);
1883 #endif
1884  KE_TRACE(10, (" malloc( %d ) returned %p\n", (int)descr.size_allocated,
1885  descr.ptr_allocated));
1886  if (descr.ptr_allocated == NULL) {
1887  KMP_FATAL(OutOfHeapMemory);
1888  }
1889 
1890  addr_allocated = (kmp_uintptr_t)descr.ptr_allocated;
1891  addr_aligned =
1892  (addr_allocated + sizeof(kmp_mem_descr_t) + alignment) & ~(alignment - 1);
1893  addr_descr = addr_aligned - sizeof(kmp_mem_descr_t);
1894 
1895  descr.ptr_aligned = (void *)addr_aligned;
1896 
1897  KE_TRACE(26, (" ___kmp_allocate_align: "
1898  "ptr_allocated=%p, size_allocated=%d, "
1899  "ptr_aligned=%p, size_aligned=%d\n",
1900  descr.ptr_allocated, (int)descr.size_allocated,
1901  descr.ptr_aligned, (int)descr.size_aligned));
1902 
1903  KMP_DEBUG_ASSERT(addr_allocated <= addr_descr);
1904  KMP_DEBUG_ASSERT(addr_descr + sizeof(kmp_mem_descr_t) == addr_aligned);
1905  KMP_DEBUG_ASSERT(addr_aligned + descr.size_aligned <=
1906  addr_allocated + descr.size_allocated);
1907  KMP_DEBUG_ASSERT(addr_aligned % alignment == 0);
1908 #ifdef KMP_DEBUG
1909  memset(descr.ptr_allocated, 0xEF, descr.size_allocated);
1910 // Fill allocated memory block with 0xEF.
1911 #endif
1912  memset(descr.ptr_aligned, 0x00, descr.size_aligned);
1913  // Fill the aligned memory block (which is intended for using by caller) with
1914  // 0x00. Do not
1915  // put this filling under KMP_DEBUG condition! Many callers expect zeroed
1916  // memory. (Padding
1917  // bytes remain filled with 0xEF in debugging library.)
1918  *((kmp_mem_descr_t *)addr_descr) = descr;
1919 
1920  KMP_MB();
1921 
1922  KE_TRACE(25, ("<- ___kmp_allocate_align() returns %p\n", descr.ptr_aligned));
1923  return descr.ptr_aligned;
1924 } // func ___kmp_allocate_align
1925 
1926 /* Allocate memory on cache line boundary, fill allocated memory with 0x00.
1927  Do not call this func directly! Use __kmp_allocate macro instead.
1928  NULL is NEVER returned, __kmp_abort() is called in case of memory allocation
1929  error. Must use __kmp_free when freeing memory allocated by this routine! */
1930 void *___kmp_allocate(size_t size KMP_SRC_LOC_DECL) {
1931  void *ptr;
1932  KE_TRACE(25, ("-> __kmp_allocate( %d ) called from %s:%d\n",
1933  (int)size KMP_SRC_LOC_PARM));
1934  ptr = ___kmp_allocate_align(size, __kmp_align_alloc KMP_SRC_LOC_PARM);
1935  KE_TRACE(25, ("<- __kmp_allocate() returns %p\n", ptr));
1936  return ptr;
1937 } // func ___kmp_allocate
1938 
1939 /* Allocate memory on page boundary, fill allocated memory with 0x00.
1940  Does not call this func directly! Use __kmp_page_allocate macro instead.
1941  NULL is NEVER returned, __kmp_abort() is called in case of memory allocation
1942  error. Must use __kmp_free when freeing memory allocated by this routine! */
1943 void *___kmp_page_allocate(size_t size KMP_SRC_LOC_DECL) {
1944  int page_size = 8 * 1024;
1945  void *ptr;
1946 
1947  KE_TRACE(25, ("-> __kmp_page_allocate( %d ) called from %s:%d\n",
1948  (int)size KMP_SRC_LOC_PARM));
1949  ptr = ___kmp_allocate_align(size, page_size KMP_SRC_LOC_PARM);
1950  KE_TRACE(25, ("<- __kmp_page_allocate( %d ) returns %p\n", (int)size, ptr));
1951  return ptr;
1952 } // ___kmp_page_allocate
1953 
1954 /* Free memory allocated by __kmp_allocate() and __kmp_page_allocate().
1955  In debug mode, fill the memory block with 0xEF before call to free(). */
1956 void ___kmp_free(void *ptr KMP_SRC_LOC_DECL) {
1957  kmp_mem_descr_t descr;
1958 #if KMP_DEBUG
1959  kmp_uintptr_t addr_allocated; // Address returned by malloc().
1960  kmp_uintptr_t addr_aligned; // Aligned address passed by caller.
1961 #endif
1962  KE_TRACE(25,
1963  ("-> __kmp_free( %p ) called from %s:%d\n", ptr KMP_SRC_LOC_PARM));
1964  KMP_ASSERT(ptr != NULL);
1965 
1966  descr = *(kmp_mem_descr_t *)((kmp_uintptr_t)ptr - sizeof(kmp_mem_descr_t));
1967 
1968  KE_TRACE(26, (" __kmp_free: "
1969  "ptr_allocated=%p, size_allocated=%d, "
1970  "ptr_aligned=%p, size_aligned=%d\n",
1971  descr.ptr_allocated, (int)descr.size_allocated,
1972  descr.ptr_aligned, (int)descr.size_aligned));
1973 #if KMP_DEBUG
1974  addr_allocated = (kmp_uintptr_t)descr.ptr_allocated;
1975  addr_aligned = (kmp_uintptr_t)descr.ptr_aligned;
1976  KMP_DEBUG_ASSERT(addr_aligned % CACHE_LINE == 0);
1977  KMP_DEBUG_ASSERT(descr.ptr_aligned == ptr);
1978  KMP_DEBUG_ASSERT(addr_allocated + sizeof(kmp_mem_descr_t) <= addr_aligned);
1979  KMP_DEBUG_ASSERT(descr.size_aligned < descr.size_allocated);
1980  KMP_DEBUG_ASSERT(addr_aligned + descr.size_aligned <=
1981  addr_allocated + descr.size_allocated);
1982  memset(descr.ptr_allocated, 0xEF, descr.size_allocated);
1983 // Fill memory block with 0xEF, it helps catch using freed memory.
1984 #endif
1985 
1986 #ifndef LEAK_MEMORY
1987  KE_TRACE(10, (" free( %p )\n", descr.ptr_allocated));
1988 #ifdef KMP_DEBUG
1989  _free_src_loc(descr.ptr_allocated, _file_, _line_);
1990 #else
1991  free_src_loc(descr.ptr_allocated KMP_SRC_LOC_PARM);
1992 #endif
1993 #endif
1994  KMP_MB();
1995  KE_TRACE(25, ("<- __kmp_free() returns\n"));
1996 } // func ___kmp_free
1997 
1998 #if USE_FAST_MEMORY == 3
1999 // Allocate fast memory by first scanning the thread's free lists
2000 // If a chunk the right size exists, grab it off the free list.
2001 // Otherwise allocate normally using kmp_thread_malloc.
2002 
2003 // AC: How to choose the limit? Just get 16 for now...
2004 #define KMP_FREE_LIST_LIMIT 16
2005 
2006 // Always use 128 bytes for determining buckets for caching memory blocks
2007 #define DCACHE_LINE 128
2008 
2009 void *___kmp_fast_allocate(kmp_info_t *this_thr, size_t size KMP_SRC_LOC_DECL) {
2010  void *ptr;
2011  size_t num_lines, idx;
2012  int index;
2013  void *alloc_ptr;
2014  size_t alloc_size;
2015  kmp_mem_descr_t *descr;
2016 
2017  KE_TRACE(25, ("-> __kmp_fast_allocate( T#%d, %d ) called from %s:%d\n",
2018  __kmp_gtid_from_thread(this_thr), (int)size KMP_SRC_LOC_PARM));
2019 
2020  num_lines = (size + DCACHE_LINE - 1) / DCACHE_LINE;
2021  idx = num_lines - 1;
2022  KMP_DEBUG_ASSERT(idx >= 0);
2023  if (idx < 2) {
2024  index = 0; // idx is [ 0, 1 ], use first free list
2025  num_lines = 2; // 1, 2 cache lines or less than cache line
2026  } else if ((idx >>= 2) == 0) {
2027  index = 1; // idx is [ 2, 3 ], use second free list
2028  num_lines = 4; // 3, 4 cache lines
2029  } else if ((idx >>= 2) == 0) {
2030  index = 2; // idx is [ 4, 15 ], use third free list
2031  num_lines = 16; // 5, 6, ..., 16 cache lines
2032  } else if ((idx >>= 2) == 0) {
2033  index = 3; // idx is [ 16, 63 ], use fourth free list
2034  num_lines = 64; // 17, 18, ..., 64 cache lines
2035  } else {
2036  goto alloc_call; // 65 or more cache lines ( > 8KB ), don't use free lists
2037  }
2038 
2039  ptr = this_thr->th.th_free_lists[index].th_free_list_self;
2040  if (ptr != NULL) {
2041  // pop the head of no-sync free list
2042  this_thr->th.th_free_lists[index].th_free_list_self = *((void **)ptr);
2043  KMP_DEBUG_ASSERT(this_thr == ((kmp_mem_descr_t *)((kmp_uintptr_t)ptr -
2044  sizeof(kmp_mem_descr_t)))
2045  ->ptr_aligned);
2046  goto end;
2047  }
2048  ptr = TCR_SYNC_PTR(this_thr->th.th_free_lists[index].th_free_list_sync);
2049  if (ptr != NULL) {
2050  // no-sync free list is empty, use sync free list (filled in by other
2051  // threads only)
2052  // pop the head of the sync free list, push NULL instead
2053  while (!KMP_COMPARE_AND_STORE_PTR(
2054  &this_thr->th.th_free_lists[index].th_free_list_sync, ptr, nullptr)) {
2055  KMP_CPU_PAUSE();
2056  ptr = TCR_SYNC_PTR(this_thr->th.th_free_lists[index].th_free_list_sync);
2057  }
2058  // push the rest of chain into no-sync free list (can be NULL if there was
2059  // the only block)
2060  this_thr->th.th_free_lists[index].th_free_list_self = *((void **)ptr);
2061  KMP_DEBUG_ASSERT(this_thr == ((kmp_mem_descr_t *)((kmp_uintptr_t)ptr -
2062  sizeof(kmp_mem_descr_t)))
2063  ->ptr_aligned);
2064  goto end;
2065  }
2066 
2067 alloc_call:
2068  // haven't found block in the free lists, thus allocate it
2069  size = num_lines * DCACHE_LINE;
2070 
2071  alloc_size = size + sizeof(kmp_mem_descr_t) + DCACHE_LINE;
2072  KE_TRACE(25, ("__kmp_fast_allocate: T#%d Calling __kmp_thread_malloc with "
2073  "alloc_size %d\n",
2074  __kmp_gtid_from_thread(this_thr), alloc_size));
2075  alloc_ptr = bget(this_thr, (bufsize)alloc_size);
2076 
2077  // align ptr to DCACHE_LINE
2078  ptr = (void *)((((kmp_uintptr_t)alloc_ptr) + sizeof(kmp_mem_descr_t) +
2079  DCACHE_LINE) &
2080  ~(DCACHE_LINE - 1));
2081  descr = (kmp_mem_descr_t *)(((kmp_uintptr_t)ptr) - sizeof(kmp_mem_descr_t));
2082 
2083  descr->ptr_allocated = alloc_ptr; // remember allocated pointer
2084  // we don't need size_allocated
2085  descr->ptr_aligned = (void *)this_thr; // remember allocating thread
2086  // (it is already saved in bget buffer,
2087  // but we may want to use another allocator in future)
2088  descr->size_aligned = size;
2089 
2090 end:
2091  KE_TRACE(25, ("<- __kmp_fast_allocate( T#%d ) returns %p\n",
2092  __kmp_gtid_from_thread(this_thr), ptr));
2093  return ptr;
2094 } // func __kmp_fast_allocate
2095 
2096 // Free fast memory and place it on the thread's free list if it is of
2097 // the correct size.
2098 void ___kmp_fast_free(kmp_info_t *this_thr, void *ptr KMP_SRC_LOC_DECL) {
2099  kmp_mem_descr_t *descr;
2100  kmp_info_t *alloc_thr;
2101  size_t size;
2102  size_t idx;
2103  int index;
2104 
2105  KE_TRACE(25, ("-> __kmp_fast_free( T#%d, %p ) called from %s:%d\n",
2106  __kmp_gtid_from_thread(this_thr), ptr KMP_SRC_LOC_PARM));
2107  KMP_ASSERT(ptr != NULL);
2108 
2109  descr = (kmp_mem_descr_t *)(((kmp_uintptr_t)ptr) - sizeof(kmp_mem_descr_t));
2110 
2111  KE_TRACE(26, (" __kmp_fast_free: size_aligned=%d\n",
2112  (int)descr->size_aligned));
2113 
2114  size = descr->size_aligned; // 2, 4, 16, 64, 65, 66, ... cache lines
2115 
2116  idx = DCACHE_LINE * 2; // 2 cache lines is minimal size of block
2117  if (idx == size) {
2118  index = 0; // 2 cache lines
2119  } else if ((idx <<= 1) == size) {
2120  index = 1; // 4 cache lines
2121  } else if ((idx <<= 2) == size) {
2122  index = 2; // 16 cache lines
2123  } else if ((idx <<= 2) == size) {
2124  index = 3; // 64 cache lines
2125  } else {
2126  KMP_DEBUG_ASSERT(size > DCACHE_LINE * 64);
2127  goto free_call; // 65 or more cache lines ( > 8KB )
2128  }
2129 
2130  alloc_thr = (kmp_info_t *)descr->ptr_aligned; // get thread owning the block
2131  if (alloc_thr == this_thr) {
2132  // push block to self no-sync free list, linking previous head (LIFO)
2133  *((void **)ptr) = this_thr->th.th_free_lists[index].th_free_list_self;
2134  this_thr->th.th_free_lists[index].th_free_list_self = ptr;
2135  } else {
2136  void *head = this_thr->th.th_free_lists[index].th_free_list_other;
2137  if (head == NULL) {
2138  // Create new free list
2139  this_thr->th.th_free_lists[index].th_free_list_other = ptr;
2140  *((void **)ptr) = NULL; // mark the tail of the list
2141  descr->size_allocated = (size_t)1; // head of the list keeps its length
2142  } else {
2143  // need to check existed "other" list's owner thread and size of queue
2144  kmp_mem_descr_t *dsc =
2145  (kmp_mem_descr_t *)((char *)head - sizeof(kmp_mem_descr_t));
2146  // allocating thread, same for all queue nodes
2147  kmp_info_t *q_th = (kmp_info_t *)(dsc->ptr_aligned);
2148  size_t q_sz =
2149  dsc->size_allocated + 1; // new size in case we add current task
2150  if (q_th == alloc_thr && q_sz <= KMP_FREE_LIST_LIMIT) {
2151  // we can add current task to "other" list, no sync needed
2152  *((void **)ptr) = head;
2153  descr->size_allocated = q_sz;
2154  this_thr->th.th_free_lists[index].th_free_list_other = ptr;
2155  } else {
2156  // either queue blocks owner is changing or size limit exceeded
2157  // return old queue to allocating thread (q_th) synchronously,
2158  // and start new list for alloc_thr's tasks
2159  void *old_ptr;
2160  void *tail = head;
2161  void *next = *((void **)head);
2162  while (next != NULL) {
2163  KMP_DEBUG_ASSERT(
2164  // queue size should decrease by 1 each step through the list
2165  ((kmp_mem_descr_t *)((char *)next - sizeof(kmp_mem_descr_t)))
2166  ->size_allocated +
2167  1 ==
2168  ((kmp_mem_descr_t *)((char *)tail - sizeof(kmp_mem_descr_t)))
2169  ->size_allocated);
2170  tail = next; // remember tail node
2171  next = *((void **)next);
2172  }
2173  KMP_DEBUG_ASSERT(q_th != NULL);
2174  // push block to owner's sync free list
2175  old_ptr = TCR_PTR(q_th->th.th_free_lists[index].th_free_list_sync);
2176  /* the next pointer must be set before setting free_list to ptr to avoid
2177  exposing a broken list to other threads, even for an instant. */
2178  *((void **)tail) = old_ptr;
2179 
2180  while (!KMP_COMPARE_AND_STORE_PTR(
2181  &q_th->th.th_free_lists[index].th_free_list_sync, old_ptr, head)) {
2182  KMP_CPU_PAUSE();
2183  old_ptr = TCR_PTR(q_th->th.th_free_lists[index].th_free_list_sync);
2184  *((void **)tail) = old_ptr;
2185  }
2186 
2187  // start new list of not-selt tasks
2188  this_thr->th.th_free_lists[index].th_free_list_other = ptr;
2189  *((void **)ptr) = NULL;
2190  descr->size_allocated = (size_t)1; // head of queue keeps its length
2191  }
2192  }
2193  }
2194  goto end;
2195 
2196 free_call:
2197  KE_TRACE(25, ("__kmp_fast_free: T#%d Calling __kmp_thread_free for size %d\n",
2198  __kmp_gtid_from_thread(this_thr), size));
2199  __kmp_bget_dequeue(this_thr); /* Release any queued buffers */
2200  brel(this_thr, descr->ptr_allocated);
2201 
2202 end:
2203  KE_TRACE(25, ("<- __kmp_fast_free() returns\n"));
2204 
2205 } // func __kmp_fast_free
2206 
2207 // Initialize the thread free lists related to fast memory
2208 // Only do this when a thread is initially created.
2209 void __kmp_initialize_fast_memory(kmp_info_t *this_thr) {
2210  KE_TRACE(10, ("__kmp_initialize_fast_memory: Called from th %p\n", this_thr));
2211 
2212  memset(this_thr->th.th_free_lists, 0, NUM_LISTS * sizeof(kmp_free_list_t));
2213 }
2214 
2215 // Free the memory in the thread free lists related to fast memory
2216 // Only do this when a thread is being reaped (destroyed).
2217 void __kmp_free_fast_memory(kmp_info_t *th) {
2218  // Suppose we use BGET underlying allocator, walk through its structures...
2219  int bin;
2220  thr_data_t *thr = get_thr_data(th);
2221  void **lst = NULL;
2222 
2223  KE_TRACE(
2224  5, ("__kmp_free_fast_memory: Called T#%d\n", __kmp_gtid_from_thread(th)));
2225 
2226  __kmp_bget_dequeue(th); // Release any queued buffers
2227 
2228  // Dig through free lists and extract all allocated blocks
2229  for (bin = 0; bin < MAX_BGET_BINS; ++bin) {
2230  bfhead_t *b = thr->freelist[bin].ql.flink;
2231  while (b != &thr->freelist[bin]) {
2232  if ((kmp_uintptr_t)b->bh.bb.bthr & 1) { // the buffer is allocated address
2233  *((void **)b) =
2234  lst; // link the list (override bthr, but keep flink yet)
2235  lst = (void **)b; // push b into lst
2236  }
2237  b = b->ql.flink; // get next buffer
2238  }
2239  }
2240  while (lst != NULL) {
2241  void *next = *lst;
2242  KE_TRACE(10, ("__kmp_free_fast_memory: freeing %p, next=%p th %p (%d)\n",
2243  lst, next, th, __kmp_gtid_from_thread(th)));
2244  (*thr->relfcn)(lst);
2245 #if BufStats
2246  // count blocks to prevent problems in __kmp_finalize_bget()
2247  thr->numprel++; /* Nr of expansion block releases */
2248  thr->numpblk--; /* Total number of blocks */
2249 #endif
2250  lst = (void **)next;
2251  }
2252 
2253  KE_TRACE(
2254  5, ("__kmp_free_fast_memory: Freed T#%d\n", __kmp_gtid_from_thread(th)));
2255 }
2256 
2257 #endif // USE_FAST_MEMORY